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Surface Waves in Laterally Heterogeneous Media

Samuel Bignardi'; Francesco Fedele?; Giovanni Santarato®; Anthony J. Yezzi*; and Glenn J. Rix®

Abstract: Surface wave methods exploit the dispersive properties of Rayleigh and Love waves to estimate the shear wave velocity profiles in
vertically heterogeneous subsurfaces. Typically, they rely on a simplified one-dimensional (1D) analytical forward model where the lateral
variation of the layer thickness is neglected and so is the fraction of the incident energy of the fundamental mode that is reflected or converted
to higher modes. A theoretical study is presented that attempts to define an analytical model that overcomes the limitations of 1D forward mod-
els. In particular, we revisit properties of semianalytical approaches that aim at solving the dynamics of Love waves in laterally heterogeneous
media made of a soft upper layer of varying thickness lying over an infinitely deep hard layer. The novel analytical model stems from a local-
mode expansion of waves with laterally varying amplitudes, which allows for both reflections of the incident modes and coupling to higher
modes. The best wave approximation stems from an action principle that leads to a coupled system of second-order ordinary differential
equations (ODEs) for the wave amplitudes. Last, an application of this model and its validity are discussed. DOI: 10.1061/(ASCE)EM.1943-

7889.0000566. © 2013 American Society of Civil Engineers.
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Introduction

The dispersive nature of Rayleigh and Love waves in a heteroge-
neous half-space is exploited in surface methods to obtain the shear
wave velocity profile from the surface wave particle motions excited
and recorded on the ground surface (that is, the boundary of the
medium). The solution of the inverse problem to obtain the shear
wave velocity (and/or material damping ratio) profile requires a
forward (subsurface) model to predict the propagation, scattering,
and dissipation of seismic waves in the medium. One widely used
forward model in surface wave testing is that in which each layer is
isotropic and homogeneous, and the layer interfaces are planar and
horizontal. The key properties of each layer are the elastic parame-
ters (or seismic wave velocities), the mass density, and the thickness.
Such models are capable of capturing only the vertical variation in
elastic properties—that is, they are one dimensional (1D). One of the
attractive features of this model is that it is very computationally
efficient to calculate the modal displacements and stresses using
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matrix operations (Aki and Richards 2002), which makes it ideal for
inverse problems employing iterative solutions. Clearly, however,
this model is only an approximation of the actual soil conditions for
most sites, and its use may lead to misleading results if the actual soil
profile is far from the assumed geometry. Indeed, lateral variation
and wave backscattering are not taken into account, and only a few
higher modes of vibration are considered. The spatial variation
of the layer thickness is usually neglected and so is the fraction
of incidental energy of the fundamental mode that is reflected or
converted to higher modes. In this paper, an analytical study is
presented that aims at modeling elastic waves in laterally varying
media that overcomes the limitations of traditional 1D forward
models. The numerical alternative based on the boundary element
method (Brebbia et al. 1984) is discussed elsewhere (Bignardi et al.
2012; Bignardi 2011). Hereafter, the focus is on the dynamics of
Love waves, which are attractive from a theoretical point of view and
have been studied analytically by several authors (Noyer 1961;
Knopoff and Mal 1967; Wolf 1970; Lysmer and Drake 1971; Gjevik
1973; Maupin 2007; Hador and Buchen 1999). Studies on the wave
dynamics in laterally varying media span at least 40 years of lit-
erature, and several methods have been formulated. Among these,
the Lagrangian approach was introduced by Whitham (1967, 1974)
to investigate the dynamics of nonlinear water waves. Applications
of such a variational method to the study of long seismic waves were
presented by Gjevik (1973) and Hador and Buchen (1999) for Love
and Rayleigh waves, respectively. On the other hand, analytical
methods that exploit the coupling and matching of different wave
modes have been proposed by Maupin and Kennett (1987) and
Maupin (1992) (see also Maupin 2007 for a review of such methods).

In particular, the analytical model in Maupin (1988) is valid for
Rayleigh and Love waves, and for structures that have several layers
and lateral variations of the elastic properties inside the layers.
Later, Maupin (1992) extended the coupling method to waves that
propagate at an angle to the two-dimensional (2D) structure and to
inelastic media. Other analytical approaches based on the Jeffreys,
Wentzel, Kramers, and Brillouin (JWKB) approximation find ap-
proximate solutions of the elastic equations with spatially varying
coefficients. For example, Tromp and Dahlen (1992) derived local
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Love and Rayleigh eigenfunctions, local dispersion relations, and
transport equations, which determine the wave propagation on a
smooth, laterally heterogeneous Earth model. Clearly, in geophys-
ical imaging, numerical modeling of elastic waves has become
popular in the last two decades or so (Virieux et al. 2011). However,
analytical approaches are still valuable for fast computations of the
wave propagation when the source is far from the investigated region
(see, for example, Panza et al. 2001) or in some full waveform in-
version methods (see, for example, Du 2002).

In this paper, it is proposed to revisit semianalytical approaches
with their advantages and limitations by presenting an analytical
model that stems from a novel local-mode representation of
monochromatic Love waves, which is optimized by an action
principle. To do so, conservative systems are studied, and the dy-
namic equations follow from a variational principle based on the
Lagrangian for Love waves (Gjevik 1973). Consider ahomogeneous
upper soft layer with varying thickness n(x) lying over a semi-
infinite hard layer, with x as the horizontal axis, as shown in Fig. 1.
The vertical profile of wave displacements at any horizontal position
x is represented by a local-mode series involving the propagating
eigenmodes allowed by the dispersion relation, which depends on
the local thickness n(x). The proposed eigenmode series expansion
accounts for both forward-propagating and backward-propagating
waves. Locally, such eigenmodes are exactly equal to those for
a parallel-layered media, but their wavelength is spatially varying
because the local thickness of the layer is. They satisfy the zero-stress
condition at the free surface and the continuity of the vertical stresses
at the interface between the two layers. The amplitudes of the Love
eigenmodes are unknown and are assumed to be spatially varying in
x. Then, exploiting an action principle, the associated Euler-
Lagrange equations yield a set of coupled second-order ordinary
differential equations (ODESs) for the optimal amplitudes that satisfy
the wave dynamics. To the present authors’ knowledge, such for-
mulation has not yet been applied to problems in seismic wave
propagation. It may be a useful contribution because the proposed
model considers a laterally varying layered geometry with constant
elastic parameters, a special case of the more general model derived
by Maupin (1988).

The paper is structured as follows: First, the theoretical formu-
lation for Love wave is introduced. Then, the associated variational
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Fig. 1. Model setup and geometry of laterally varying two-layered
media

formulation based on the Lagrangian is presented. A local-mode
wave expansion is defined and the associated coupled-mode system
follows from an action principle via the Euler-Lagrange equations.
Last, applications and limitations of the proposed model will be
discussed.

Transmission Problem

Consider a laterally heterogeneous medium such as that shown in
Fig. 1, where x and z are, respectively, a horizontal and a vertical
coordinate. Let the upper and the lower layers have densities p; and
p,, respectively. The upper layer has a free boundary at z = 0, and
the lower layer is assumed to be infinitely deep. The media is
divided in three vertical zones: [ (x < — L), [ (—L = x = L), and
I (x> L), respectively. The two layers extend horizontally to
infinity, and in the far-field zones I and III the layers are parallel. In
the intermediate zone II, the upper and lower layer are separated by
a varying interface z=n(x). Zone I is excited by an incident
monochromatic plane wave that generates a displacement field
Vin(%, z, t) that propagates in the x-direction. As it passes through
zone II, it undergoes reflections, and only part of its energy is
transmitted to zone III, where the wave displacements vy (x, z, 1)
propagate undisturbed. The cumulated effect of all the reflections
in zone II yields a reflected back-propagating wave with dis-
placements vg(x, z,¢) through zone I, and the total wave field in
zone 1 is v; =vg + v;,. The displacements of these waves are
normal to the plane through the x-axis and z-axis. If the materials in
both layers behave according to linear elastic laws, then the dis-
placements in zone II vary according to the equations of motion
(Aki and Richards 2002)

02
—P—a;;” +uViy =0 )]

where V = 0,X + 0,Z; X, Z = unit vectors of x and z; p and w are soil
parameters given by the piecewise functions

_ [P, 0=z=n(y) _ [ 0=z=n(y)
p(x’z)_{pz, 2>n(x) “(x’z)_{ﬂz, z>n(x)

At the free-surface z =0, and at z — % zero-stress boundary con-
ditions are imposed, viz
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The continuity of both displacements and normal stresses at the
interface z = n(x) requires that

Virl_y = 0, [,U,Vv” -ﬁ} ) 3)

="

where [g], _, stands for the jump of g(z) across z = d, that is
[4]:—q = lim[g(z + €) = gz — €)] “)

and n is the unit vector normal to the interface 5, defined as
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The continuity of stresses and displacements at the common
boundaries of zones I-1I (x = — L) and zones II-1II (x = L), requires
the following matching conditions

. _ ovyr . av1> _
=l =0 w(GE-G)| -
(v = vl =0, p(2L-2)| g ©
R ’ ox ox / lx=L

It is straightforward to prove that the boundary value problem
[Egs. (1)—(3) and (6)] is the minimizer of an action .4 that follows
from 6.4 = 0, where 6 denotes variational differentiation (see Ap-
pendix I). In particular, A is given by

t, L
A:J Jﬁdxdt @)

no—L
where the Lagrangian density is defined as
L=T-K—-B 8)

Here, J and K are the kinetic and potential energy densities given,
respectively, by

roafoeye -

=

vamzdz ©)
0

The term B accounts for the matching and boundary conditions
[Egs. (2), (3), and (6)] as

0 ovyd
B =luvil._, (ﬂ _ M_’?)

0z ox dx 2=n
- JM@Q’H—H—%) dz
X 2 x=—L
0
+JMM(V,,+M) dz (10)
ox 2 x=L
0

In the following, a local-mode expansion of the wave field for the
laterally varying medium of Fig. 1 is introduced. Then, the equations
governing the wave dynamics are derived by minimizing the action

[Eq. (D]

Wave Expansion and Dynamics

Mode Expansion for Zones | and Il

Assume the thickness of the upper layer equal to d. The standard
representation of the wave field v, is given in the form

Vo, 2,1) = S Anfu(z;d)e® ) ¢ c. (11)
n

where c.c. denotes complex conjugation; the wave numbers k,
satisfy the dispersion relation

w2 2
tan(ivid) = ——fU“ZVZ, v; = 4 k? _Pe @ (12)
2
v i B;

and f,(z; d) are the eigenfunctions of the Sturm-Liouville problem

d2 n
T2, =0 (13)

with the requirements of continuity for both displacements and
vertical stresses at z = d, viz

[f”]z:d =0, |:/-’“Z_f;:| » =0 14)

and zero-stresses at the free-surface, viz

dfn

iz =0 (15)

z=0

From Eq. (11), the incident and reflected components of the dis-
placements v; = v;, + vg in zone I can be defined, respectively, as

Vin = Zlneik”l <"+L)fn(z;d1)e7i“” +c.c.

n

: . (16)
VR = ZRneﬂk"’ (HL)fn(Z; di)e ™ +c.c.
n

where d; = n(—L); and I, and R, = constant amplitudes. Further,
in zone III vy is defined as

v =Y T, e (X*L)fn(z; d3)e ™ +c.c. a7

n

where d = d; = n(L); and T,, = amplitude of the transmitted wave.
The wave expansion for zone II requires a new formulation, as
subsequently discussed.

Local-Mode Wave Representation for Zone Il

The spatially varying wave field in zone II can be efficiently rep-
resented by the local-modes series [Eq. (18)], as in Maupin (2007),

Jkuy (0£)dE ~ot

V][(X, % (1)) = Z a,,(x) n(Z, w, TI)el |:0

n

} +c.c. (18)

where a, = unknown spatially varying amplitudes, and the integral
in the exponential term allows us to follow the phase evolution of the
wave field.

Because the depth d = n(x) is spatially varying, so are both k,, (x)
and f,(z, n). Consequently, the Sturm-Liouville problem [Eq. (13)]
can be considered as a continuous family of problems with parameter
d = n(x). This suggests the equivalent representation

vi(x.2.0) = S Az melon@x el e e 9)

where now amplitudes A, are complex and related to @, and the
associated phases by

an(x) = A, (x)el {_ JL o € o (X)x} (20)
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Clearly, the complex amplitude A, describes both the forward-
propagating and the backward-propagating modes and its evolu-
tion reflects the coupling between modes, the reflection, and the
phase adjustment of the modes themselves. The advantage of the
compact representation [Eq. (19)] is that the associated dynamical
equations for A, as will be shown later, are a set of N second-order
ODE:s that will be solved using spectral methods. Splitting A, in the
two backward and forward waves would lead to a set of 2N first-
order ODEs. The spectral method used in this work is more efficient
and accurate for second-order ODE:s.

Note that Eq. (19) satisfies the continuity of displacements at the

interface because [f;]._, = O atany x, but the normal stresses are not
continuous. Indeed, from Egs. (19) and (14)
A d‘l] 0v”
2 ~n} — —dn [ —} 21
[M n-n| 7 [ ox — (21)

As a consequence, the total energy density £ = 7 + K is also not
conserved along x. However, the local-mode representation [Eqs.
(16), (17), and (19)]

vy = Z(lneik”, (x+L) T Rye (x+L)) fulz: dl)e—iwt Tee

n

vii = ZAn ()C) n (Z; x)ei[k”” (X)X_w’] +c.c (22)

Vi =Y, Te*m C~Df (z:d3)e ™ 4 c.c.

n

can be optimized by the action principle to minimize the residual
[Eq. (21)]. Indeed, given the incident amplitude /,, we seek the
optimal functions A, (x), the reflection and transmitted coefficients
R, and T, that minimize the action A(A,, R,, T,) in Eq. (8), as
follows:

SA _8A _B5A
8A, OT, oR,

=0 (23)

where 6 denotes variational differentiation. In particular, the first
variation in Eq. (23) yields a coupled system of second-order ODEs)
for A,, as

Mo d’A; dA;
bj——L+ci—L+djA; =0, i=1,....M (24
/;”dx2+c’fdx+’” ’ @4)

and the boundary conditions at x = — L and x = L, respectively, as
ikl = (2iknA,, + %) emil Bl (05
dx r—=—L dx x=L

The matrix elements by;, ¢;;, and d;; are given in Appendix IL. Further,
the other two variations in Eq. (23) yield the reflection and trans-
mitted coefficients, which depend upon the mode amplitudes A,,
such as

R, = e—ik,, LAn| I, T,=A, |x:Leik”L (26)

x=—L

The set of Eq. (24) together with the boundary conditions
[Eq. (25)] are solved numerically via standard Chebyshev spectral
methods. We refer to Trefethen (2000) for details on the numerical
implementation of the spectral solver. For a flat interface, the model
[Eq. (24)] decouples, and the classical solution for Love waves is
recovered (Aki and Richards 2002). Indeed, to assess the reliability

of the algorithm, several tests were performed for a geometry with
parallel layers, for which the solver yielded wave amplitudes con-
stant in the x direction, as expected.

Note that backreflections are taken into account by the analytical
model [Eq. (24)]. This is because the amplitudes A, are complex-
valued solutions of second-order ODEs that provide for the dis-
placements v;; a solution in the form of two opposite traveling waves.
Last, observe that Love eigenmodes are independent locally but not
globally, and mode coupling is necessary to satisfy both matching
and boundary conditions on the laterally varying interface.

Applications

Consider the two-layered subsurface shown in Fig. 2. For the upper
(lower) layer, p, = 1,600 (2,400) kg/m’ and 8, = 400 (1,500) m/s.
The varying interface is modeled by a half-sine-shaped buried
hill with average 10% slope over a depth H = 1.2 km, and the
spatial extension is 2L = 6 km. Waves propagate in the x-direction
at f = w/2m = 8 Hz. At this frequency, in addition to the funda-
mental mode, with wavelength Ly = 314.8 m, six higher modes are
admissible with wavelengths L; =320.4 m, L, =3324 m, L3 =
3532 m, Ly =388.2 m, Ls =451.2 m, and Ls = 591.4 m, respec-
tively. For simplicity, in the present application we consider a setup
with a constant number of modes in zone II. The case of subregions
with different numbers of modes will not be considered here;
however, such configurations can be handled by the proposed ap-
proach by splitting the computational domain into subregions with
a fixed number of modes and then matching the solutions by im-
posing continuity of displacements and stresses. All the modes are
set to have identical amplitudes Ao = 0.005 m and zero phases at
x = — L.From Eq. (22), each eigenmode in zone Il can be written as

|Anfn(z, )expli(6n + kn,x — wt)] 27

where |A, | and 0, = arctan[Im(A, ) /Re(A,,)] are the absolute value
and the phase of the complex amplitude A, respectively. Then, after
solving the ODE system [Eq. (24)], the local wave number k,, of each
mode can be computed from Eq. (27) as

= dk de
kn(x) = kn(x) + xd—):' + a'_xn (28)

where k,(x) = k,, is the local approximation computed from the

dispersion relation [Eq. (12)], with d as the interface depth 7(x). The
associated phase velocity C, follows as

TOBO poeevei it
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E 11200 layer A

=
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L1160 . ..o A
1180} . oo A

1200
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Fig. 2. Two-layered media with varying interface modeled by a half-
sine-shaped buried hill with average 10% slope over a depth
H =1.2 km, and spatial extension 2L = 8 km; for the upper (lower)
layer, p, = 1,600 (2,400) kg/m’, and B, = 400 (1,500) m/s
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Cu(x) =2 (29)

Fig. 3 shows the spatial variation of the magnitude of the complex
amplitudes A, /Ao at x= — L. Note the amplification of higher
modes in the region where the thickness of the upper layer decreases.
This is expected because of the redistribution of energy among the
modes, which is approximately conserved. Indeed, we were able to
investigate interface slopes < 10% with a negligible loss in energy.
However, for interfaces with 15% slope, the energy loss increases to
5%. Larger slopes up to 25% yield 15% of the energy loss. Fig. 4
shows also the lateral variation of the wave number k, in the
x-direction (bold lines) in comparison with the local approximation
l;n. Note that the wave number of the fundamental mode does not
vary laterally and is almost equal to that of horizontal shear waves in
the upper layer (dashed lines). Indeed, its wavelength Ly = 314.8 m
is smaller than the average interface depth H, and the fundamental
mode is not affected by the interface. However, lateral in-
homogeneities affect the lowermost higher modes, whose wave
numbers tend to increase as they propagate over shallower regions of
the upper layer, shortening their wavelengths. As a consequence, for
higher modes the phase velocity C, increases in comparison with the
associated parallel-layered counterpart w/k, (see Fig. 5). Fig. 6
shows the spatial variation of the wave displacements v;; (bold line)
at the free surface (z=0) and the associated parallel-layered
counterpart (vy) , (dashed line), computed as if the layers were
parallel, with d = n(—L) = 1,200 m, as follows:

1.25

— Fulndumenuﬂ. mode
— 1 N

i 1.05
<
0.95
0.9
085 0.8 -0.4 0 0.4 0.8
x/L

Fig. 3. Spatial variation of normalized eigenmode amplitudes |4,|/A¢
for the two-layered media in Fig. 2 (f = 8 Hz)

-0. -0.4 4 .
0.8 0 OX/L 0 0.8

Fig. 4. Spatial variation of the wave number &, (bold lines) and the
associated approximation k, = k,, (dashed lines) from the dispersion

relation [Eq. (12)], with d as the interface depth 7(x), for the two-layered
media in Fig. 2 (f =8 Hz)

(v”)|z:0 = ZA,,(X) n(o, n)ei[k”u (X>x_ﬂ)f]

(VII)I, 0 = ZAOfn(O, n)ei[k"u(il‘)xfuﬁ]
= n

Because all the modes are in phase, constructive interference
(linear focusing) occurs atx/L = 0 in the parallel-layered case. Such
focusing is annihilated when waves propagate through the laterally
varying media from deep to shallow areas, reducing displacements
because of the increased stiffness of the first layer. The associated
power spectra S(k) and S, (k) for v and (vyr), at the free surface are
shown in Fig. 7, respectively. The spectrum § is wider than S,,, as
expected, mainly because of the fact that the modes have laterally
varying k,,, and backreflections and mode coupling may have
a minor role. Last, as previously stated, we observed energy losses
> 15% for slopes > 15%. Indeed, the analytical model [Eq. (24)],
although derived from an action principle, is inadequate to correctly
represent the wave field near the interface n because of errors in the
stress-matching boundary conditions at the interface [see Eq. (21)].
Such stress mismatch is an indirect indication that the wave energy is
not conserved. To minimize energy losses, Rutherford and Hawker
(1981) proposed expanding the wave field using perturbed local
modes that satisfy the continuity conditions at the interface to the first
order in the slope. On the other hand, Maupin (1988) transformed the
traction discontinuity along the interface in volume forces to satisfy

0
x/L

Fig. 5. Phase velocity C, (bold lines) and the associated local ap-
proximation C, (x)= wk, (dashed lines) computed from the dispersion
relation [Eq. (12)], with d as the interface depth 7(x) for the two-layered
media in Fig. 2 (f =8 Hz)

08 04 04 08
Fig. 6.Normalized wave displacements vj; /A (bold line) at the surface

(z = 0) for the two-layered media in Fig. 2 and the associated parallel-
layered counterpart (dashed line)
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stress continuity. The proposed solution of the wave field of zone II
that follows from solving the Euler-Lagrange [Egs. (24) and (25)], is
optimal in the sense that the error associated with the continuity of
the normal stresses 7, = uVvy - 0 across 7 is the lowest possible.
Fig. 8 shows the spatial variation of the dimensionless stress jump
[T,]/max(7,), across n for different slopes, with max(r,), as the
maximum normal stress at 7 in the upper layer. As one can see, only
for slopes greater than 10%, the jumps are not negligible, and as
a consequence the variational solution is not reliable. To provide
a simple explanation of the limitated optimality of the proposed
Lagrangian model, consider the general solution of the elastic
Navier’s equations. It can be obtained via separation of variables
(Aki and Richards 2002) as the linear superposition of two plane S
waves traveling along z in opposite direction, as follows:

VA (A,,eik‘f" Zy Bneiik"” z)ei[kn” (x)x*a)t] (30)

where k, =, /k2 + k2 (Aki and Richards 2002). If the free sur-
face is flat, to'satisfy the zero-stress condition at z = 0 one must have
B,=A,, and

VA, (eikz,, z e—ikz,l z)ei[k”” (x)x—wt] — AnCOS(kZ”Z)ei[k”" (x)x—wl]
(€2))
400
£350
% 300
5250

=200
150

Power spectra S
)
(=]

W
(=]

| IA/MMM

0.01 0.014 0.018  0.022
k [rad/m]

(=]

Fig. 7.Power spectra S(k) of the surface displacements in zone II (bold
line) and the associated parallel-layered counterpart for the two-layered
media in Fig. 2 (f =8 Hz)
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Fig. 8. Spatial variation of the normal stress jump 7, across the in-
terface for different slopes with 7, = u Vvy - it; max(7,), is the maxi-
mum stress at the interface in the upper layer (f = 8 Hz)

If the interface has weak to moderate slopes, the two S waves have
similar wave numbers k, , and their constructive interference can
be modeled by Eq. (31) along with the minimization of the as-
sociated action, which can compensate for the stress mismatch at
the interface. When the interface has large slopes ( >15%), the two
S waves have different values of k,,, and the original elastic partial
differential equations (PDEs) cannot be solved by separation of
variables in the x and z directions. In this case, the set of local Love
eigenmodes of Eq. (31) is not suitable to represent independent S
waves, and the Lagrangian minimization partially compensates for
the mismatch. Work is in progress to satisfy the stress continuity at
the interface by including fictitious volume forces in the present
variational model, as is done in Maupin (1988), and thus to provide
comparisons with the more general Maupin’s formulation, which
is valid for multilayered geometries and varying elastic parameters
within the layers.

Conclusions

Semianalytical approaches have been revisited to solve for the
propagation of Love waves in laterally heterogeneous media. To
do so, a novel analytical model based on a local-mode represen-
tation of the surface displacements is formulated. Such ansatz is
exact for a flat interface, and it is a good approximation for weakly
varying sloping interfaces (Gjevik 1973). The proposed La-
grangian minimization extends the applicability of this ansatz to
interfaces with moderate slopes, and it accounts for backreflections
and higher-mode coupling. However, for steep interfaces >15%,
the proposed local-mode representation [Eq. (19)] is poor because
it does not accurately model reflections at both the interface and the
free surface. Work is in progress to improve the proposed varia-
tional model by transforming the traction discontinuity along the
interface in volume forces, as in Maupin (1988), and will be
discussed elsewhere.

Appendix I. Action Principle for Love Waves

The Lagrangian [Eq. (8)] is explicitly given by
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where the subscripts 1 and 2 denote the upper and lower media,
respectively. Variational differentiation of action A yields
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Performing integration by parts and exploiting properties of the
wave ansatz [Eqgs. (16) and (17)] yield
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is the space-time average of the integrand f. Note that in Eq. (34) dvy,
ovy,, 6vy,, Ovyy are arbitrary. Thus, the only way to impose 6.4
identically to zero is by setting at each line of Eq. (34) the integrand
of the space-time integral equal to zero. This yields the boundary
value problem [Egs. (1)-(3), (6)].

Appendix Il. Matrix Coefficients
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where
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