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A B S T R A C T   

Delineation of tumours in Positron Emission Tomography (PET) plays a crucial role in accurate diagnosis and 
radiotherapy treatment planning. In this context, it is of outmost importance to devise efficient and operator- 
independent segmentation algorithms capable of reconstructing the tumour three-dimensional (3D) shape. In 
previous work, we proposed a system for 3D tumour delineation on PET data (expressed in terms of Standardized 
Uptake Value - SUV), based on a two-step approach. Step 1 identified the slice enclosing the maximum SUV and 
generated a rough contour surrounding it. Such contour was then used to initialize step 2, where the 3D shape of 
the tumour was obtained by separately segmenting 2D PET slices, leveraging the slice-by-slice marching 
approach. Additionally, we combined active contours and machine learning components to improve perfor
mance. Despite its success, the slice marching approach poses unnecessary limitations that are naturally removed 
by performing the segmentation directly in 3D. In this paper, we migrate our system into 3D. In particular, the 
segmentation in step 2 is now performed by evolving an active surface directly in the 3D space. The key points of 
such an advancement are that it performs the shape reconstruction on the whole stack of slices simultaneously, 
naturally leveraging cross-slice information that could not be exploited before. Additionally, it does not require 
any specific stopping condition, as the active surface naturally reaches a stable topology once convergence is 
achieved. 

Performance of this fully 3D approach is evaluated on the same dataset discussed in our previous work, which 
comprises fifty PET scans of lung, head and neck, and brain tumours. The results have confirmed that a benefit is 
indeed achieved in practice for all investigated anatomical districts, both quantitatively, through a set of 
commonly used quality indicators (dice similarity coefficient >87.66%, Hausdorff distance < 1.48 voxel and 
Mahalanobis distance < 0.82 voxel), and qualitatively in terms of Likert score (>3 in 54% of the tumours).   

1. Introduction 

Positron Emission Tomography (PET) has become increasingly 
popular in cancer studies, even though PET images typically present 
lower spatial resolution and pose several additional complications (e.g. 
the partial volume effect [1]) when compared to other popular imaging 
approaches such as Magnetic Resonance Imaging (MRI) and Computed 
Tomography (CT). The main reason for this popularity is that functional 
indexes derived from PET imaging, for example the Standardized Uptake 

Value (SUV, i.e. the ratio between tissue radioactivity concentration and 
the injected dose normalized by the body weight), can be predictive of 
the patient’s oncological outcome and are useful in obtaining an 
objective evaluation of patient response to treatment [2]. This makes 
PET imaging a suitable tool in clinical cancer treatment decision making 
[3–5]. In addition, PET imaging is a crucial step towards precise radia
tion therapy treatment planning. In the era of “dose painting” [6], PET 
images are used to identify the most aggressive areas within the tumour. 
Indeed, the inclusion of PET in radiotherapy planning conveys valuable 
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guidance for targeting tumours more efficiently, escalating the radiation 
dose [7,8]. Additionally, texture information from PET imaging is being 
investigated in several recent radiomics studies [9–11]. On the one 
hand, such applications depend on a reliable metabolic tumour volume 
(MTV) segmentation strategy as a necessary prerequisite for obtaining 
accurate and reproducible evaluations of the PET parameters associated 
to the anomalous tissue [12]. On the other hand, due to the low spatial 
resolution of PET images caused by detector crystal size, scanner ge
ometry, and positron range [1,13], delineating the metabolic volume of 
the tumour is still considered challenging and no general agreement has 
reached concerning which segmentation approach performs best [14]. 
Manual contouring is still a common choice in clinical practice. Unfor
tunately, it is very time-consuming and results tend to vary according to 
expertise and clinical specialization of the operator. 

Concerning the computer-aided segmentation, several automatic or 
semi-automatic algorithms have been proposed so far [15,16] also in 
other image techniques and application fields such as cardiac and ce
rebral districts [17,18]. In the following, a brief overview is given, 
focusing on PET imaging. Fixed, adaptive and iterative 
thresholding-based [15,19] and region growing methods [20] are the 
most common. Nevertheless, due to the image noise and scanner type, 
these methods typically fail when delineating heterogeneous tumours 
[15]. Stochastic methods [21] show high accuracy in the heterogeneous 
tumour delineation outperforming thresholding methods taking 
advantage of the fuzziness of lesion boundaries in PET images. Among 
classification and clustering methods, Fuzzy C-Means (FCM) [22] is the 
most used but it is not suited for multi-focal region segmentation [23]. 
Affinity propagation may be used, in principle, to partition an image 
according to an optimal threshold obtained by investigating the image’s 
histogram, but so far it has been successful only on rabbit images [24]. 
Graph-based methods, such as graph cut and random walk [25,26], have 
been applied to functional image contouring as well. Their major 
drawback is the “min cuts” effect that occurs when a small set of seeds is 
used. Recently, Conventional Neural Networks (CNN) have been suc
cessfully applied for the segmentation of lung and head-and-neck tu
mours [14]. Unfortunately however, their application is still 
computationally challenging and require big datasets for training. For 
completeness, it is worth to mention that hybrid approaches, which 

perform the segmentation on PET and CT (or MRI) simultaneously, have 
been proposed as well [28–31]. Nevertheless, in this paper we shall not 
discuss such a class of applications. 

Among the most efficient segmentation algorithms, active contours 
(AC) [27–30] leverage a silhouette initially placed around the tumour, 
which deforms and moves to fit the tumour boundaries. Such iterative 
evolution of the contour is obtained by minimizing the so-called “en
ergy”, a real-valued multi-parameter function. The lower the energy, the 
better the segmentation. In the past, a combination of active contour and 
anisotropic diffusion filtering, followed by a multi-resolution contourlet 
transform has been proposed in Ref. [31]. The main limitation of this 
algorithm is a heavy dependence on user-defined parameters. Another 
solution included histogram fuzzy C-means clustering and textural in
formation to constrain the active contour [32]. Nevertheless, it suffers 
when a local high uptake area sits very close to the contour and is 
influenced by the choice of the initial region of interest (ROI). 

In our recent studies [33–35], we investigated the use of the 
18F-fluoro-2-deoxy-d-glucose (FDG) and the 11C-labeled Methionine 
(MET) radiotracers in PET and we devised an algorithm for the 
semi-automatic tumour segmentation in PET-SUV imaging that became 
fully automatic in the case of brain lesions [36,37]. In detail, Comelli 
et al. [33] introduced a semi-automatic segmentation performed in two 
steps (Fig. 1-A). 

In both steps, PET slices were travelled upward and downward 
starting from a specific initial slice. In step 1, the manual segmentation 
on a slice chosen by the user was propagated and adapted to successive 
slices using the region growing algorithm to identify the slice enclosing 
the maximum SUV and generate a rough contour surrounding it. Such 
contour was then used to initialize step 2, where slices were travelled 
once more and the segmentation was performed leveraging an active 
contour. Step 2, in the specific, leveraged a slice-by-slice marching al
gorithm coupled with a suitable stopping condition, while segmentation 
on single slices was achieved through AC. In two subsequent papers [34, 
35], we proposed a very innovative idea: we coupled the active contour 
with machine learning (ML) components to take into account tissue 
classification. Despite combining ML approaches and active contour 
may seem to have been considered by many authors, most approaches 
have kept active contour and ML as independent entities. In contrast, we 

Fig. 1. A comparison of the two-step PET segmentation algorithm from our previous work (A) and the new implementation introduced here (B). In step 2 (the right 
block), the new implementation substitutes the slice-wise (i.e. 2D) active contour and the slice-by-slice marching approach (blocks f, g, h, and i, in figure A) with a 
fully 3D shape evolution (block f1, figure B). In this way, cross-slice information that was previously overlooked is now fully leveraged. Further, the shape evolution 
can run to convergence (i.e. to a stable shape) without the need of an artificial stopping condition. Additionally, the User-independent Pre-Segmentation (step 1, 
block e) was modified to provide a 3D shape as initialization to step 2. 
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included tissue classification directly within the active contour frame
work by modifying the mathematical formulation of the energy to be 
minimized. 

Since the main motivation to our previous work was to devise an 
algorithm capable of satisfying the increasing need for efficient, 
repeatable and real-time PET segmentations; the slice-by-slice marching 
approach represented a very convenient and efficient simplification. 

While the previous algorithm moved an important step toward 3D 
segmentation, it might be argued that, since the distance of PET slices is 
greater compared to the pixel size, the planar resolution is greater than 
the vertical resolution, resulting in the introduction of an artificial 
preferential direction. Additionally, even starting with a boundary 
inherited from an adjacent slice, the 2D evolution of the contour on the 
slice does not entirely consider what is actually happening in the slices 
above and below. Marching through slices is efficient as long as the 
tumour’s cross-section changes continuously between slices. While the 
distance between slices is short enough to guarantee that a shape 
misidentification is unlikely, one could nevertheless conceive three- 
dimensional tumour shapes capable of generating topologically 
disconnected entities on the PET slice. Fig. 2 conceptually illustrates this 
issue. It is worthy of note that the same shape would be correctly 
retrieved if the marching direction was reversed. 

In other words, the choice of using the slice marching approach poses 
unnecessary limitations that are naturally removed by solving the seg
mentation directly in 3D. Reformulating [33–35] in a fully 3D frame
work requires three components (with reference to Fig. 1):  

1. Modify block 1: (e) becomes (e1), where a 3D initialization is 
generated  

2. Replacing the slice-marching active contour with the evolution of a 
surface embedded in the 3D data volume, i.e. an active surface.  

3. Reformulate the energy functional described in Ref. [34,35] to work 
efficiently in 3D. 

Since point 3 is the most involved, one may wonder (as we did 
ourselves) if the exercise of extending the whole machinery described in 
Ref. [33] (i.e. even without considering tissue classification) into 3D, 
pays off by actually improving segmentation in practice. 

Therefore, we propose a reconstruction based on the evolution of a 
three-dimensional active surface (i.e. truly 3D). Similarly to our 

previous investigation, to include the functional aspects of the tumour, 
PET data are converted into SUV before the segmentation. In the present 
study, however, the contribution of the tissue classification to the seg
mentation process [34,35] will not be discussed, as it is not yet included 
in the current version of the algorithm. The latter will be investigated in 
a forthcoming paper. Summarizing, the key contributions of the present 
paper are: 1) to provide discussion on the points 1 and 2 introduced 
earlier, 2) remove unnecessary limitations of our previous work, 3) 
evaluate whether the migration from the slice-marching approach into 
3D yields a practical benefit in terms of segmentation performance (in 
absence of tissue classification), and consequently 4) motivate the effort 
of developing and embedding a full 3D classification into the active 
surface energy. Evaluation of the performance is obtained by comparing 
the gold standards, provided by three M.D., and the contours corre
sponding to the intersection of the active surface with the PET slices. The 
results obtained on a dataset which includes fifty clinical cases and 
comprises tumours in lung, head and neck, and brain districts, confirm 
the effectiveness of the adopted methodology. 

In the following: section 2 describes the new full 3D approach, sec
tion 3 introduces the PET dataset, and section 4 describes the perfor
mance of the proposed method. Finally, Sections 5 and 6 are devoted to 
discussion and conclusions, respectively. 

2. Overview of the proposed method 

The present algorithm inherits several features from the system 
described in our previous work [33]. For clarity sake, we will briefly 
summarize the main characteristics of such a system (Fig. 1-A), then 
highlighting the key novelty aspects introduced (Fig. 1-B). In Fig. 1-A, 
the first block (grouping steps b to e) consists of a pre-segmentation in 
which the user roughly identifies the area containing the cancer on just a 
single PET slice. The algorithm then computes (using the region growing 
method) a user-independent ROI and automatically finds an optimal 
starting mask. By optimal starting mask, we mean a 2D contour sitting at 
an optimal location, in terms of slice position and rough shape. Such a 
mask may actually lay on a slice different from the one initially high
lighted by the operator. By construction, both the ROI and the optimal 
mask still belong to the same anatomical anomaly and encircle the 
highest radiotracer uptake area (SUVmax). Details can be found in 
Ref. [33]. 

Once this operation is concluded, the optimal initial mask is feed to 
the next block of the system, where the segmentation is performed using 
a local region-based active contour. Here, the algorithm performs the 
fine segmentation using a slice-by-slice marching approach which starts 
at the slice containing the initial mask and propagates upward and 
downward. Every time a slice has segmented, the contour is propagated 
to the next adjacent slice until the stopping criterion is met. The final 3D 
shape corresponds to the assembly of all the contours produced on every 
slice. 

The present algorithm (Fig. 1-B) inherits the same pre-segmentation 
design while the fine segmentation is achieved evolving one whole 
active surface which intersects and segments all the PET data volume (i. 
e. all slices) at once. Nevertheless, to initialize such an algorithm a three- 
dimensional shape is required and the output of the pre-segmentation 
(step “e1” in Fig. 1B) need to be modified accordingly. To generate a 
suitable initial shape, we experimented two different approaches: A) the 
ROI is transformed in an ellipsoid enclosing the SUVmax and B) using the 
boundary surface generated by a 3D region growing initiated at the 
voxel with SUVmax. 

Approach “A”, henceforth referred to as the “ellipsoid”, provides a 
fast and simple to implement a solution. Additionally, using a regular 
surface as a starting condition for the active surface helps the stability of 
the evolution. Nevertheless, the choice of using an ellipsoid, although it 
follows the major axis of the tumour, seems somewhat arbitrary. This 
motivated the second approach “B” (henceforth “RG-VOI”), chosen 
because of its capability of “chasing” the tumour starting from 

Fig. 2. Example of a three-dimensional tumour shape that, once sliced, in
troduces topologically disjoint features that potentially, could not be captured 
by the slice-marching approach. The disconnected cross-section on the left is 
not a continuous transformation of the contour being propagated from slice 1 
and may remain undetected. Note that the same shape would be correctly 
reconstructed by reversing the marching direction. Such topological changes 
between slices are naturally accommodated by the active surface. 
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predefined seed. The difference in performance connected with the 
choice of the initialization algorithm will be discussed in section 4. 

Regardless of the choice, a volume of interest (VOI) is produced and 
feed to the second block in Fig. 1-B. It is worthy of note that the only 
requirement for the surface initialization step is that the produced 
boundary envelops part of the tumour, including the SUVmax, but it does 
not require to possess any fine detail. 

2.1. The fully three-dimensional active contour 

Block II (Fig. 1B) features the active surface algorithm that performs 
the fine segmentation. Starting from the model proposed by Lankton 
et al. [38] where the local active contour method for 3D MR datasets was 
applied via independent segmentation of the 2D slices, we designed a 
more powerful and coherent segmentation procedure which achieves 
the simultaneous segmentation of all slices by evolving a single surface 
within the corresponding three-dimensional space. 

To incorporate SUV in the algorithm as well as formulate it in a fully 
3D setting, the contour energy to be minimized for PET image seg
mentation is defined as: 

E¼
Z

S

0

@
Z

Rin

χlðx; sÞðSUVðxÞ � ulðsÞÞ2dxþ
Z

Rout

χlðx; sÞðSUVðxÞ � vlðsÞÞ2dx

1

AdS

(1)  

where S denotes the active surface (3D), dS the surface area measure, 
and s the surface parameter (2D), where x denotes a point within the 3D 
volume and dx the volume measure, where Rin and Rout represent the 3D 
regions inside and outside the surface respectively, where SUV repre
sents the intensity function of the standardized uptake value to be 
segmented, where FX represents the indicator function of a local 
neighbourhood around the surface point S(s), and where ulðsÞ and vlðsÞ
denote the local mean SUV intensities within the intersections of this 
local neighbourhood with the volumes Rin and Rout inside and outside 
the surface respectively. We choose these neighbourhoods to be spheres 
of radius l (in our study l ¼ 3 has been determined to provide the best 
performance using trial and error strategy [33]) centred around each 
point of the surface S. Note that the function FX) evaluates to 1 in a local 
neighbourhood around each surface point S(s) and 0 elsewhere, thereby 
localizing the processing of SUV image information. The shape of the 
surface S then divides each such local region into interior local points 
and exterior local points in accordance with the surface’s segmentation 
of the SUV. The local means are specified in terms SIl ðsÞ, SEl ðsÞ, VIl ðsÞ FX, 
and VEl ðsÞ which represent the local sums of SUVs and the volumes of 
their respective portions of the local neighbourhood FX) inside and 
outside the curve (within Rin and Rout). More precisely, the local interior 
region may be expressed as FX and the local exterior region as FX. 

ulðsÞ¼
SIl ðsÞ
VIl ðsÞ

; vlðsÞ ¼
SEl ðsÞ
VEl ðsÞ

(2)  

SIl ðsÞ¼
Z

Rin

χlðx; sÞSUVðxÞdx; SEl ðsÞ¼
Z

Rout

χlðx; sÞSUVðxÞdx (3)  

VIl ðsÞ¼
Z

Rin

χlðx; sÞ dx;VEl ðsÞ¼
Z

Rout

χlðx; sÞ dx (4)  

χlðx; sÞ¼
�

1 when x 2 l � ballðCðsÞÞ;
0 otherwise;

(5) 

Summarizing, the 3D surface (i.e. either the ellipsoid or the RG-VOI) 
obtained by the pre-segmentation step is used as input and evolved to 
minimize the energy E (equation (1)) and consequently to fit the tumour 
silhouette. 

3. Data 

3.1. Clinical studies 

To experiment our approach we considered the same patient dataset 
of our previous work [33] consisting of fifty PET studies (lung, head & 
neck, and brain cancers). Additionally, to compare the performance of 
the present algorithm with the capabilities of the slice-by-slice approach 
we used the same gold standard. Concerning the PET data, no sensitive 
patient information was accessed. The institutional Hospital Medical 
Ethics Review Board approved this study protocol and all subjects 
involved were properly informed and released their written consent. 

For FDG PET examinations, patients fasted for 12 h before the scan, 
and successively were intravenously injected with FDG. The PET/CT 
study began 60 min after the injection and was executed from the top of 
the skull to the middle of the thigh with the arms along the body. 

For MET PET examinations, patients fasted for 4 h before the scan, 
and successively were intravenously injected with MET. The PET/CT 
protocol began 10 min after the injection. The study investigated the 
only brain region. 

3.2. PET/CT acquisition protocol 

A Discovery 690 PET/CT scanner with time of flight (General Electric 
Medical Systems, Milwaukee, WI, USA) was used for acquisitions. The 
PET protocol included a SCOUT scan at 40 mA, a CT scan at 140 keV and 
150 mA (10 s), and 3D PET scans (2.5 min per bed position). PET images 
were reconstructed using a 3D ordered subset expectation-maximization 
algorithm. Each PET slice consists of 256 � 256 voxels with a grid 
spacing of 2.73 mm3 and thickness of 3.27 mm3. Consequently, the size 
of each voxel is 2.73 � 2.73 � 3.27 mm3. Because of the injected 
radiotracer, tumours appear as hyperintense regions. 

The non-diagnostic CT scan was performed for attenuation correc
tion and anatomic localization of the tumour contextually to PET image 
acquisition. Each CT slice consists of 512 � 512 voxels with size 1.36 �
1.36 � 3.75 mm3. 

3.3. Gold standard 

In PET studies, the only valid ground truth can be obtained using 
histopathology analysis [39]. Obviously, both chemo and radiotherapy 
while attaching the tumour modify its shape over time so that the actual 
gold-standard is impossible to retrieve. Consequently, we refer to 
manual delineations performed by three clinicians with different 
expertise (the chief nuclear medicine physician, M.I. author, the chief 
radiotherapy physician, M.S. author, and an expert radiotherapy 
physician, G.R. author) as a substitute for ground truth [14]. Since 
judging which region of a PET image should be included in the tumour 
volume is a challenging task, manual segmentations performed by 
different operators are typically different. Therefore, we used the soft
ware STAPLES [40] to generate a consolidated reference on every PET 
slice containing the tumour. Briefly, this software is formulated as an 
instance of the “expectation maximization”. As such, it leverages the 
statistical properties of a set of input contours to compute the most likely 
consolidated one. In our case, of course, input consisted of the seg
mentations performed independently by our three experts. In this way, 
we obtained the “ground truth” necessary to evaluate the performance 
of the proposed algorithm concerning different radio-tracers and body 
districts. 

4. Results 

4.1. Segmentation results 

To assess the performance of our segmentation, ten patients with 
lung cancer (FDG PET), twenty-five patients with head and neck cancers 
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(FDG PET), and fifteen patients with brain metastases (MET PET) were 
considered. The ellipsoid and the RG-VOI initialization methods (see 
section 2) generated very similar results for the majority of the cases. In 
45 cases out of 50, the performance in minimizing the difference be
tween manual and automated BTVs using ellipsoid or RG-VOI changed 
of only 0.3% in terms of dice similarity coefficient (DSC). Nevertheless, 
in 5 cases out of 50 the pre-segmentation performed with the 3D region 
growing mistakenly incorporated adjacent healthy tissues so misleading 
the subsequent evolution. For this reason, we show only the results 
obtained using the ellipsoid. 

From this initial geometry, the active surface is evolved and allowed 
to locally expand and shrink within the full 3D vicinity of the tumour 
until convergence. 

As stated in the introduction, to evaluate the quality of the result we 
compare the gold standards (see section 3.3) with the contours obtained 
by intersecting the active surface with the planes defined by the PET 
slices. For each clinical case, we compute a set of performance indicators 
routinely used in literature; namely sensitivity, positive predictive value 
(PPV), DSC, Hausdorff distance (HD), and Mahalanobis distance (MHD). 
These indicators are widely used for shape comparison [39,41,42]. They 
take cumulatively into account the similarity of the described contours 
at each slice, therefore providing an evaluation of the similarity of the 
overall three-dimensional shape to the gold standard (for more details 
see the appendix). 

Finally, the values of these parameters are compared to the corre
sponding results from previous work, directly available from Ref. [33]. 
Tables 1–3 summarize the performance for the three lesion datasets, 
according to the formulas in the appendix. 

Table 4 summarizes the results from Tables 1–3 and emphasizes that 
the 3D segmentation, based on the active surface, performed better than 
the slice-marching version, overall increasing the DSC of about 2%. 

We performed an analysis of the variance (ANOVA) on the DSC to 
evaluate the similarity of the segmentations obtained from the two 
methods, across all the 50 cases considered, on a statistical basis. Table 5 
compares the results of such analysis. We consider a difference between 
two segmentations to be “significant” when the p-value is < 0.05. 
Therefore, the fully 3D approach, with a mean DSC of 88.06 � 2.74%, 
not only performed overall better than the old approach (DSC ¼ 86.47 �
3.24%), but with p-value ~ 0.0083 provided a significantly different 
result as well. 

The purely numerical evaluation of the results presented here was 
further supported by feedback provided by our clinical staff. In this 
perspective, a qualitative evaluation based on the Likert score was car
ried out. The Likert scale provided a tool to the clinicians to rate the two 
segmentations with respect to the perceived clinical reliability of the 

retrieved contour, judged according to their professional expertise. The 
3D approach was, in their perception, the best. Despite its qualitative 
nature, such evaluation let us understand whether the clinician trusted 
the segmentation provided by the software and which one between the 
fully 3D and the slice-by-slice marching approach was, in their percep
tion, the best. 

The five-point Likert scale ranges from 1 (worst) to 5 (best): 1. Strong 
worsened compared to the slice-marching MTV; 2. Moderately wors
ened; 3. Indifferent, neither worsened or enhanced; 4. Moderately 
enhanced 5. Strongly enhanced. 

Our clinical staff, composed of the chief nuclear medicine physician, 
the chief radiotherapy physician, and an expert radiotherapy physician 
analysed the tumour segmentation using 2D and 3D methods. Consid
ering their different clinical backgrounds, the physicians were able to 
jointly provide a careful evaluation for each lesion. In 54% of cases, the 
MTV definition was enhanced using the fully three-dimensional algo
rithm shrinking false-positive uptake areas (Likert score ¼ 4–5). In the 
remaining 46% of cases, 3D MTVs were comparable with 2D MTVs 
(Likert score ¼ 3). Fig. 3 reports the qualitative comparison between the 
two methods, considering the three situations mentioned above. 

5. Discussion 

As introduced before, there are several advantages in including PET 
imaging in the routine clinical procedures related to cancer diagnosis 
and treatment. Since MTV identification is a crucial step, it is of no 
surprise that a significant number of PET segmentation algorithms have 
been proposed. 

In this study, we upgraded our previous system based on active 
contours and a slice marching approach [27,33], to full 3D. Some as
pects are worthy of note. 

If, on the one hand, many studies have suggested the combined use of 
information from PET and CT, on the other hand, morphological infor
mation from CT and metabolic information from PET (opportunely 
converted into SUV images to include functional aspects of the tumour), 
are not guaranteed to generate the same boundaries. As such, when this 
asymmetric relation is not taken into account, it can lead to incorrect 
results, (as shown in Ref. [43]). In the present paper, as we did in 
Ref. [33], only PET images have been used to extract MTVs while we will 
investigate CT inclusion in future work. 

Moving toward full 3D and using an active surface requires some 
adaptation of the pre-segmentation algorithm and several engineering 
solutions may be conceived. What we require to the pre-segmentation 
step is to produce a rough surface which encloses the SUVmax and 
reasonably (i.e. with negligible detail) includes the most of the 

Table 1 
Performance indicators for 10 clinical cases of lung cancer investigated using FDG-PET. The result of the 3D active surface algorithm is compared against the analogous 
performance of the slice-marching approach. Mean Sensitivity, PPV, DSC, HD, and MHD are reported. Mean value, standard deviation (std), 95% confidence interval 
(CI) and coefficient of variation (CV) are reported in the bottom section of the table.   

Lung 
Cancer 

Slice-marching algorithm Active surface algorithm 

Sensitivity [%] PPV [%] DSC [%] HD [voxels] MHD [voxels] Sensitivity [%] PPV [%] DSC [%] HD [voxels] MHD [voxels] 

#1 91.60% 81.70% 86.40% 2.49 1.60 93.53% 81.43% 87.06% 1.19 0.81 
#2 97.60% 82.80% 89.60% 1.98 1.39 99.47% 81.68% 89.70% 1.63 0.85 
#3 98.50% 71.60% 82.90% 2.59 2.09 79.36% 90.73% 84.67% 1.92 0.83 
#4 85.00% 85.00% 85.00% 1.08 0.83 98.75% 81.44% 89.27% 0.94 0.30 
#5 98.90% 83.20% 90.40% 1.48 0.72 87.25% 96.76% 91.76% 1.34 0.62 
#6 88.80% 77.20% 82.60% 1.69 0.84 93.87% 83.15% 88.18% 1.43 0.50 
#7 91.00% 73.60% 81.40% 1.14 0.48 85.39% 80.85% 83.06% 1.09 0.86 
#8 96.70% 78.40% 86.60% 1.25 0.91 83.18% 91.28% 87.04% 2.03 1.25 
#9 94.70% 76.30% 84.50% 2.60 0.67 91.38% 84.46% 87.78% 1.44 0.77 
#10 93.50% 76.60% 84.20% 2.38 0.60 97.94% 80.62% 88.44% 1.79 0.51 

Mean 93.63% 78.64% 85.36% 1.87 1.01 91.01% 85.24% 87.70% 1.48 0.73 
� std �4.55% �4.41% �2.94% �0.62 �0.51 �6.97% �5.64% �2.48% �0.36 �0.26 
� CI (95%) �2.82% �2.73% �1.82% �0.38 �0.32 �4.32% �3.50% �1.54% �0.22 �0.16 
� CV �4.86% �5.60% �3.44% �0.33 �0.51 �7.66% �6.62% �2.83% �0.24 �0.36  
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surrounding high uptake tissue; assuming such tissue is part of the 
lesion. As a base-line requirement, the desired initial surface, once 
intersected the slice containing the user input, should produce a 
boundary which does not exceed significantly the contour provided as 
input. We implemented two solutions: one computationally fast, based 
on simple geometric considerations but potentially oversimplified (i.e. 
an ellipsoid following the main axes of the found anomaly), and one 

tailored to the data (i.e. exploiting a 3D region growing), computa
tionally more involved and potentially leading to a complex initial 
shape. Since the surface identified during the pre-segmentation step is 
input to the active surface evolution, it may affect the outcome of the 
whole segmentation process (Fig. 1b). Therefore, we investigated the 
robustness of the proposed 3D enhanced method concerning this 
initialization choice. We obtained strikingly similar results in forty-five 

Table 2 
Mean Sensitivity, PPV, DSC, HD, and MHD for 25 head and neck cancer studies using FDG-PET. The result of the 3D active surface algorithm is compared against the 
analogous performance of the slice-marching approach. Mean value, standard deviation (std), 95% confidence interval (CI) and coefficient of variation (CV) are 
reported in the bottom section of the table.  

Neck & head 
Cancer 

Slice-marching algorithm Active surface algorithm 

Sensitivity [%] PPV [%] DSC [%] HD [voxels] MHD [voxels] Sensitivity [%] PPV [%] DSC [%] HD [voxels] MHD [voxels] 

#1 98.70% 81.30% 89.10% 1.46 0.43 85.99% 95.10% 90.31% 1.07 0.58 
#2 83.30% 89.70% 86.40% 1.00 0.69 91.67% 84.62% 88.00% 1.03 1.09 
#3 89.80% 76.20% 82.40% 1.07 0.74 92.19% 81.94% 86.76% 1.00 0.62 
#4 85.50% 94.60% 89.80% 0.85 0.59 87.10% 93.10% 90.00% 0.93 0.61 
#5 93.20% 74.80% 83.00% 1.17 0.36 91.53% 87.80% 89.63% 0.88 0.34 
#6 96.20% 81.30% 88.10% 1.42 1.41 91.39% 89.42% 90.40% 1.60 0.83 
#7 93.90% 89.90% 91.80% 1.19 1.18 89.09% 95.25% 92.07% 2.09 0.75 
#8 99.50% 71.80% 83.40% 2.79 0.60 97.59% 73.97% 84.16% 2.41 0.59 
#9 96.90% 78.80% 86.90% 2.46 1.37 91.07% 87.80% 89.41% 1.29 0.81 
#10 97.50% 77.10% 86.10% 2.59 0.72 84.49% 90.17% 87.24% 2.73 0.75 
#11 73.10% 90.50% 80.90% 1.00 0.71 80.30% 82.81% 81.54% 1.41 1.72 
#12 99.60% 73.70% 84.70% 1.40 0.69 81.72% 95.63% 88.13% 0.95 0.75 
#13 93.80% 73.80% 82.60% 1.03 0.94 75.29% 92.75% 83.12% 1.03 0.84 
#14 91.40% 86.50% 88.90% 1.00 0.78 91.43% 86.49% 88.89% 1.21 1.05 
#15 88.80% 74.60% 81.10% 2.78 2.28 84.85% 78.45% 81.52% 3.41 1.22 
#16 77.60% 84.90% 81.10% 1.07 1.01 98.28% 75.00% 85.07% 0.95 0.72 
#17 89.80% 86.30% 88.00% 1.14 0.75 89.80% 91.67% 90.72% 0.90 0.70 
#18 91.90% 87.00% 89.40% 0.90 0.81 85.61% 94.96% 90.04% 1.14 0.44 
#19 91.40% 80.00% 85.30% 1.37 1.27 91.09% 81.75% 86.17% 1.37 0.73 
#20 96.30% 83.90% 89.70% 0.90 1.16 86.67% 92.86% 89.66% 0.90 0.87 
#21 97.30% 80.70% 88.20% 1.88 1.98 82.24% 95.34% 88.31% 1.37 1.14 
#22 80.80% 95.10% 87.40% 0.94 1.07 96.13% 82.32% 88.69% 0.94 0.78 
#23 78.70% 92.50% 85.10% 0.93 1.00 81.63% 90.91% 86.02% 0.75 0.61 
#24 93.30% 70.00% 80.00% 1.33 1.52 83.33% 86.21% 84.75% 0.90 1.03 
#25 96.60% 84.30% 90.00% 0.99 0.58 91.01% 91.01% 91.01% 1.28 0.86 

Mean 91.00% 82.37% 85.98% 1.39 0.99 88.06% 87.89% 87.66% 1.34 0.82 
� std �7.33% �7.30% �3.40% �0.61 �0.46 �5.60% �6.40% �2.95% �0.65 �0.28 
� CI (95%) �2.87% �2.86% �1.33% �0.24 �0.18 �2.20% �2.51% �1.16% �0.26 �0.11 
� CV �8.05% �8.86% �3.95% �0.44 �0.47 �6.36% �7.28% �3.37% �0.49 �0.34  

Table 3 
Mean Sensitivity, PPV, DSC, HD, and MHD for 15 brain cancer studies using MET-PET. The result of the 3D active surface algorithm is compared against the analogous 
performance of the slice-marching approach. Mean value, standard deviation (std), 95% confidence interval (CI) and coefficient of variation (CV) are reported in the 
bottom section of the table.   

Brain 
Cancer 

Slice-marching algorithm Active surface algorithm 

Sensitivity [%] PPV [%] DSC [ 
%] 

HD [voxels] MHD [voxels] Sensitivity [%] PPV [%] DSC [%] HD [voxels] MHD [voxels] 

#1 93.50% 89.90% 91.70% 0.62 1.06 97.06% 87.68% 92.13% 0.66 0.38 
#2 90.10% 78.60% 83.90% 1.33 1.14 93.57% 77.29% 84.66% 1.07 0.46 
#3 88.40% 82.80% 85.50% 1.54 0.97 96.21% 79.20% 86.88% 0.85 0.51 
#4 76.75% 99.18% 86.33% 0.58 0.61 96.48% 82.04% 88.67% 0.55 0.81 
#5 86.47% 95.89% 90.83% 0.58 0.56 88.64% 93.22% 90.87% 0.65 0.57 
#6 96.20% 75.60% 84.70% 1.91 1.18 86.73% 85.11% 85.91% 1.73 0.65 
#7 91.80% 79.50% 85.20% 2.37 1.22 83.18% 89.32% 86.14% 1.67 1.09 
#8 94.50% 84.70% 89.40% 0.79 0.85 96.36% 84.77% 90.19% 0.65 0.43 
#9 86.80% 83.30% 85.00% 1.24 1.05 99.16% 77.39% 86.93% 1.53 1.09 
#10 91.20% 88.70% 90.00% 1.40 0.93 87.19% 93.57% 90.27% 1.50 0.60 
#11 91.80% 82.90% 87.10% 1.54 0.71 83.51% 95.82% 89.24% 1.14 0.57 
#12 85.20% 97.00% 90.70% 1.38 0.59 93.14% 90.44% 91.77% 1.55 0.67 
#13 93.20% 90.30% 91.70% 1.54 1.07 95.29% 90.36% 92.76% 1.57 0.87 
#14 93.00% 84.70% 88.70% 1.81 1.72 80.93% 98.88% 89.01% 1.09 1.00 
#15 93.60% 85.80% 89.50% 0.65 0.57 96.36% 84.77% 90.19% 0.65 0.43 

Mean 90.17 86.60% 88.02 1.28 0.95 91.59% 87.32% 89.04% 1.12 0.68 
� std �4.89% �6.89% �2.75% �0.54 �0.32 �5.97% �6.62% �2.46% �0.44 �0.24 
� CI (95%) �2.47% �3.49% �1.39% �0.28 �0.16 �3.02% �3.35% �1.25% �0.22 �0.12 
� CV �5.42% �7.95% �3.12% �0.42 �0.33 �6.52% �7.58% �2.77% �0.39 �0.36  
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cases out of fifty. Consequently, the proposed method proved to be 
robust concerning the initializing surface. This behaviour can be easily 
understood by considering the intersection of the active surface with one 
PET slice and realizing that its local evolution naturally considers in
formation from the neighbouring slices. As such, there is no real need to 
deploy an involved initialization strategy. Nevertheless, in the remain
ing five cases the MTV based on the ellipsoid initialization largely out
performed the one obtained with the RG-VOI. Upon investigation, it 
turned out that the region growing algorithm either included healthy 
tissues with high uptake or excluded relevant anomalous regions. In all 
such cases, the surface produced by the RG-VOI was clearly anomalous 
and grew far beyond the reasonable segmentation boundaries provided 
by the experts, a well-known limitation of the region growing approach. 
Nevertheless, our baseline requirement was violated by the RG-VOI and 

this caused the discrepancy in performance. As such, since the ellipsoid 
provided reasonable and reliable initializations we judged it, despite its 
simplicity, to be the best solution for the initialization purpose. Notably, 
the ellipsoid fulfils our baseline requirement by construction. 

One additional advantage of the active surface over the slice 
marching approach is that it does not require any stopping condition 
[33], as the tumour boundaries are naturally managed in the vertical 
direction as well (i.e. the direction perpendicular to the PET slices). As a 
final note, while in our previous work we demonstrated that the 
slice-by-slice marching approach performed better than several other 
state-of-the-art methods, the present paper demonstrates the improved 
performance obtained migrating the whole system into the full 3D. As 
such we deemed unnecessary a thorough comparison with other 
methods. 

6. Conclusions 

In this paper, the semi-automatic segmentation method introduced 
in previous work, in the context of SUV-PET, has been upgraded and 
generalized to full 3D. The method furthers our previous work in which 
segmentation was achieved using a slice by slice marching approach and 
segmenting each PET slice separately. The present algorithm features 
instead an active surface, defined in the three-dimensional space, 
capable of segmenting all PET slices at once. By design, the algorithm 
reduces the need for manual input to a minimum and produces tumour 
segmentations that are independent from such initial input, making the 
result extremely robust and repeatable. 

The quantitative validation carried out in this work was not just to 
test the performance of the model itself, but to see if the migration into 
3D yielded a practical benefit. The results have confirmed that such a 
benefit is indeed achieved in practice and thus warrants the investment a 
developer would make in revamping an existing 2D slice-by-slice system 
into the fully 3D system tested in this paper. We have shown that the 
fully 3D approach not only removes some limitations of our previous 
work but it also improves the segmentation. 

The advancement is confirmed both numerically, in terms of DSC 
similarity with the gold standard, and visually, as evaluated by three 
experts using the Likert score. Since, as it is very common, M. D. regard 
with criticism the results of automatic/semi-automatic segmentations, 
the latter evaluation reflects how well these experts perceived the 
quality of the outcome. 

Of course, such result also motivates the additional effort required to 
migrate in full 3D the tissue classification we proposed in Ref. [34,35] 

Table 4 
Summary of the performance and comparison of Sensitivity, PPV, DSC, HD, and 
MHD using the 3D active surface algorithm and the slice-marching approach 
across different anatomical districts.  

Cancer Sensitivity 
[Mean � std] 

PPV 
[Mean �
std] 

DSC 
[Mean �
std] 

HD 
[Mean �
std] 

MHD 
[Mean �
std] 

Active surface algorithm 
Lung 91.01 � 6.97% 85.24 �

5.65% 
87.70 �
2.48% 

1.48 �
0.36 

0.73 �
0.26 

Head & 
Neck 

88.06 � 5.60% 87.89 �
6.40% 

87.66 �
2.95% 

1.34 �
0.65 

0.82 �
0.28 

Brain 91.59 � 5.97% 87.32 �
6.62% 

89.04 �
2.46% 

1.12 �
0.44 

0.68 �
0.24 

Slice marching algorithm 
Lung 93.63 � 4.55% 78.64 �

4.41% 
85.36 �
2.94% 

1.87 �
0.62 

1.01 �
0.51 

Head & 
Neck 

91.00 � 7.33% 82.37 �
7.30% 

85.98 �
3.40% 

1.39 �
0.61 

0.99 �
0.46 

Brain 90.17 � 4.89% 86.60 �
6.89% 

88.02 �
2.75% 

1.28 �
0.54 

0.95 �
0.32  

Table 5 
Analysis of the variance (ANOVA) on the DSC, showing statistical differences 
between the results from the two segmentation methods.  

ANOVA F value F critic value P-value 

Active surface algorithm vs 
Slice-marching algorithm 

7.266660788 3.93811108 0.00826835  

Fig. 3. Three examples showing the difference be
tween the segmentations based on the active surface 
(proposed approach) and the slice-marching 
approach [33]. In (a), (c), and (e), segmentations 
based on slice-marching (red contours) and the gold 
standards (yellow contours) are superimposed. 
Surfaces are rendered with a certain degree of 
transparency to emphasize volume intersections. In 
the same way, the proposed active surface seg
mentations (green contours) and the gold standards 
(yellow contours) are shown in (b), (d), and (f). It is 
worthy of note that, while gold standard was pro
duced from manual segmentations of all the slices, 
both the 3D segmentations were obtained starting 
from the rough manual segmentation on a single 
slice. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the 
Web version of this article).   
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for the slice-marching approach. Nevertheless, since tissue classification 
is not yet available in the present algorithm, the inclusion of machine 
learning components will be reserved to a forthcoming paper. Addi
tionally, in future developments, we may consider the inclusion of in
formation from CT images as well. 
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Appendix A 

We briefly summarize the meaning of parameters introduced in 
section 4.1. For a comprehensive description please refer to Ref. [39,41, 
42].  

� Sensitivity, also called true positive volume fraction (TPVF), is the 
fraction of the total amount of tissue in the retrieved segmentation 
which overlaps with the reference volume. An ideal segmentation 
would be 100% sensitive, meaning that all voxels of the reference 
volume are included in the segmented volume.  
� Specificity, also called true negative volume fraction (TNVF), is the 

fraction of tissue defined in the reference volume that is missed by 
the segmentation. An ideal segmentation would be 100% specific, 
meaning that none of the background voxels is included in the 
segmented volume.  
� Positive predictive value (PPV), also called precision, is the fraction 

of the total amount of tissue in the reference volume which overlaps 
with the segmented volume. 
� Dice similarity coefficient (DSC) measures the spatial overlap be

tween the reference volume and the segmented one. DSC ranges 
between 0% and 100%, the ideal result being 100%: perfect 
overlapping.  
� Hausdorff distance (HD) is used to measure the most mismatched 

pair of voxels, one belonging to the boundary of the reference vol
ume and the other belonging to the segmented boundary.  
� The Mahalanobis distance (MD) is the correlation of all points 

belonging to two different points clouds. 
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