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Abstract: Background: Our study assesses the diagnostic value of different features extracted from 

high resolution computed tomography (HRCT) images of patients with idiopathic pulmonary 

fibrosis. These features are investigated over a range of HRCT lung volume measurements (in 

Hounsfield Units) for which no prior study has yet been published. In particular, we provide a 

comparison of their diagnostic value at different Hounsfield Unit (HU) thresholds, including 

corresponding pulmonary functional tests. Methods: We consider thirty-two patients 

retrospectively for whom both HRCT examinations and spirometry tests were available. First, we 

analyse the HRCT histogram to extract quantitative lung fibrosis features. Next, we evaluate the 

relationship between pulmonary function and the HRCT features at selected HU thresholds, namely 

−200 HU, 0 HU, and +200 HU. We model the relationship using a Poisson approximation to identify 

the measure with the highest log-likelihood. Results: Our Poisson models reveal no difference at the 

−200 and 0 HU thresholds. However, inferential conclusions change at the +200 HU threshold. 

Among the HRCT features considered, the percentage of normally attenuated lung at −200 HU 

shows the most significant diagnostic utility. Conclusions: The percentage of normally attenuated 

lung can be used together with qualitative HRCT assessment and pulmonary function tests to 

enhance the idiopathic pulmonary fibrosis (IPF) diagnostic process. 
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1. Introduction 

Idiopathic pulmonary fibrosis (IPF) is a chronic disease characterized by an irreversible decline 

in lung function [1–3]. The progressive development of fibrotic areas within the parenchyma of the 

lungs is also accompanied by a decline in the patient’s ability to perform everyday activities and, 

consequently, an overall decline in quality of life [4]. In general, the expected survival time of a patient 

diagnosed with IPF is typically 3–5 years, which may be stretched to 5–7 years with proper anti-

fibrotic therapy [5]. Common parameters for the evaluation of IPF severity include diffusion capacity 

for carbon monoxide (DLco) and forced vital capacity (FVC), whose variation over time is associated 

with patient mortality. IPF produces rather distinctive features in high resolution computed 

tomography imaging (HRCT). For example, traction bronchiectasis and the extent of fibrosis, both 

obtained from HRCT images, have been reported to be powerful prognostic predictors for mortality. 

As such, HRCT constitutes a valuable diagnostic tool [5] capable of reducing diagnosis time and 

avoiding more invasive surgical investigation. Qualitative evaluation of disease extension from 

HRCT, in combination with physiological parameters, can be used to stage the disease [6]. 

Unfortunately, the outcome of such visual analysis can vary widely, even when performed by equally 

trained radiologists. In contrast, it has been demonstrated [7–11] that physiological parameters (e.g., 

FVC and DLco) closely correlate with parameters derived from HRCT. As such, quantification of the 

latter has become an important routine practice for IPF assessment and for the detection of 

abnormalities in the lung parenchyma. These considerations motivate the search for innovative lung 

image processing methods capable of assessing HRCT parameters [8] in a repeatable and quantitative 

manner. In this context, segmentation plays a crucial role. Although many professionals still prefer 

manual over automatic segmentation, two main drawbacks arise: (i) HRCT scans comprise hundreds 

of slices, making manual segmentation extremely time-intensive; and (ii) the result becomes highly 

operator-dependent. Since repeatability of the segmented result can only be guaranteed by computer-

assisted methods [12], several automatic segmentation tools have been proposed [13–17]. In addition, 

automatic computer-based assessment may further improve the objectivity, sensitivity, and 

repeatability of such quantitative analysis (e.g., histogram analysis and texture patterns, see Figure 

1).  

 

Figure 1. Representative high-resolution computed tomography (HRCT) study and extraction of lung 

histogram to obtain quantitative parameters. 

In this context, ‘radiomics’ has shown high potential for disease detection and treatment 

response prediction [18–21]. In contrast with traditional approaches, where HRCT images are 

inspected and subjectively interpreted, radiomics extracts a large set of quantitative features and 

analyses their statistical correlation with observable aspects of the disease (e.g., physiological 

parameters) to identify those of most relevance [22,23]. Nevertheless, radiomic results are highly 
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influenced by the tissue region considered, and this becomes an important limitation when 

segmentation is performed manually. Radiomics provides reliable results only if the whole process 

is automatic and user-independent. Consequently, automatic segmentation becomes crucial to ensure 

reproducible prediction [24,25]. 

In this study, we investigate the correlation of HRCT features from thirty-two IPF patients with 

selected physiological parameters. Most advanced HRCT feature extraction algorithms based on 

texture analysis are computationally demanding. As a consequence, their application has remained 

confined to research studies. To avoid this computational burden, some studies have focused on 

HRCT histogram evaluation [23]. The latter requires considerably less computation and is therefore 

a viable option for clinical applications. Quantitative parameters based on image histograms have 

been used to evaluate lung fibrosis scores and, consequently, to monitor the extent and severity of 

IPF [26]. We emphasize that: 1) the pulmonary fibrosis fraction (PFF%) parameter shows significant 

negative correlation with both FVC and DLco [7], 2) the percentage of the volume of normally 

attenuated lung (NL%) closely correlates with lung physiology variables, showing a large area under 

the receiver operating characteristic curve (ROC) for detecting patients in moderate or advanced 

stages of IPF [8], 3) the high-attenuation area (HAA) parameter reflects physiological impairments 

correlating with physiological measures, with visual fibrosis scores [9], and with transplant-free 

survival [10]. Furthermore, HRCT histogram indices including kurtosis, skewness, mean lung density 

(MLD), median, and variance have been considered as well [11]. Among these, kurtosis has been 

identified as a strong predictor for mortality [9]. While they are extremely promising, these studies 

greatly differ in the type of software used to perform IPF analysis, and a consistent definition of the 

Hounsfield Unit (HU) range in which the whole lung volume should be measured is not discussed. 

HU is a dimensionless quantity obtained from a linear transformation of the attenuation coefficients 

measured in CT imaging, typically used to express voxel values in a standardized form. HU ranges 

from −1000 for air, to approximately 2000 for dense bone. Conventionally, the tissue with HU values 

between two thresholds is used to estimate lung volume. The lower threshold is typically set to −1024 

HU, while the upper threshold is variable. The choice of the upper threshold has deep repercussions 

on the calculation of HRCT parameters and may affect the judgement of IPF severity. To understand 

the role of this threshold we investigated three different choices, namely −200, 0, and 200 HU as often 

encountered in the literature. To better motivate these choices, we review the IPF parameters 

introduced by several other researchers (from [7–10]): 

 Salaffi et al. [7] proposed the PFF% parameter, defined as the percentage of the non-fibrotic 

area (from −1.024 HU to −700 HU) in the HRCT lung volume (from −1.024 HU to −200 HU). 

This motivates our −200 HU choice. 

 Ohkubo et al. [8] proposed the NL% parameter, defined as the percentage of the normally 

attenuated lung (from −950 HU and −701 HU) in the HRCT lung volume (from −1.024 HU 

to 0 HU. This motivates our 0 HU choice.  

 In Tanizawa et al. [9], HAAs and LAAs were defined as areas with attenuation values 

greater than −200 HU and less than −960 HU, respectively. HAA is indicative of 

parenchymal lesions, such as ground-glass opacity and reticulation, whereas LAA is 

indicative of emphysematous patches. Additionally, HAA% and LAA% were defined as 

percentages of the HRCT lung volume) occupied by HAA and LAA, respectively. 

Unfortunately, HU thresholds were not explicitly declared in this study.  

 Ash et al. [10] introduced the HAA_A% parameter as an alternative to HAA. HAA_A% 

corresponds to the percentage of the HRCT lung volume that has a density from −250 to 

−600 HU. The HRCT lung volume was considered, in this case, from −1.024 HU to −200 HU. 

 Finally, Klim et al. [11] obtained kurtosis, skewness, MLD, median, and variance values by 

choosing +200 HU as the upper threshold in the HRCT lung volume calculation. Of course, 

this motivated our last threshold choice.  
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In summary, we see that the −200, 0, and 200 HU thresholds are frequently encountered in the 

literature, and yet, the impact of these choices on the reliability of the IPF parameters has been largely 

overlooked. Therefore, not only did we investigate state-of-the-art HRCT parameters (listed in Table 

1) to gain insight into their relationship with physiological parameters and identify potential 

surrogate measures from HRCT examinations in a real-life work setting, but we examined the effect 

of different HU threshold choices as well.  

Table 1. State-of-the-art-parameters obtained from HRCT found in recent literature. In the specific, 

high-attenuation area (HAA)% [9] is defined as areas with attenuation values greater than −200 

Hounsfield Unit (HU). HAA_A% [10] is defined as the percentage of the whole lung volume with a 

density between −250 and −600 HU. Pulmonary fibrosis fraction (PFF), normally attenuated lung 

(NL), HAA, LAA, and HAA parameters are expressed in percentage values (%) while kurtosis, 

skewness, mean lung density, median, and variance are expressed in absolute values. 

HRCT Parameter Acronyms Reference 

Pulmonary fibrosis fraction PFF% [7] 

Normally Attenuated Lung NL% [8] 

High Attenuation Area HAA% [9] 

Low Attenuation Area LAA% [9] 

High Attenuation Area HAA_A% [10] 

Kurtosis - [11] 

Skewness - [11] 

Mean Lung Density MLD [11] 

Median - [11] 

Variance - [11] 

A systematic statistical analysis among quantitative parameters obtained using different HU 

thresholds is essential to produce robust and accurate IPF biomarkers. Consequently, this study aims 

to extract and validate quantitative features from HRCT imaging and to create a “Medical Decision 

Support System” capable of improving routine clinical practice related to the diagnosis of IPF beyond 

the current standards (ATS/ERS/JRS/ALAT guidelines [4]).  

The paper is organized as follows. Section 2 describes the methodology to extract HRCT 

parameters. Section 3 describes the data used and illustrates the main results, while Section 4 is 

devoted to discussion. 

2. Materials and Methods  

2.1. Patients 

Our study evaluated retrospectively a set of thirty-two patients. All patients participated in a 

multidisciplinary team diagnosis of IPF as specified by the 2011 American Thoracic Society 

(ATS)/European Respiratory Society (ERS)/Japanese Respiratory Society (JRS)/Latin American 

Thoracic Association (LATA) IPF guidelines. Only patients with no-contrast and volumetric thin-

section CT were included in the present study. All patients were treated, as recommended, with 

antifibrotic therapies (either pirfenidone or nintedanib). All clinical data were obtained from medical 

records. FVC and DLco were performed according to the ATS/ERS guidelines using Vmax Sensor 

Medics and Jaeger (VIASYS Healthcare; Yorba Linda, CA, USA), and the results were expressed as 

percentages of predicted values. Written informed consent was not obtained from the patients 

because of the retrospective nature of the study which used clinical and HRCT data accumulated in 
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daily practice. Nevertheless, the study was approved by the ethical committee of the Policlinico-

Vittorio Emanuele Hospital of Catania (.letter number 0039547, protocol QH-IPF, date 5 September 

2018).  

2.2. High Resolution Computed Tomography (HRCT) Protocol 

All patients underwent volumetric thin-section HRCT examinations using a CT Philips scanner 

(Philips Healthcare, Cleveland, OH, USA). Scans were obtained at full inspiration from the apex to 

the lung base with the patients in the supine position. Thin-section CT images (no more than 1.5 mm) 

were with sharp kernel imaging reconstruction, contiguous or overlapping images. 

2.3. Quantitative HRCT Assessment 

The quantitative analyses of HRCT datasets were performed using an in-house processing tool 

developed in MATLAB® R2016a (The MathWorks, Natick, MA, USA), running on iMac (3.5 GHz Intel 

Core i7 processor, 16 GB memory random-access memory; Apple Computer, Cupertino, CA, USA) 

with Mac Operating System OS X El Capitan. First, to isolate the lungs from other tissues and 

structures, automatic HRCT segmentation was performed using a region growing algorithm [27] and 

isolating voxels between +200 and −1.024 HU. The same region growing method was used to 

eliminate the trachea. Next, a thoracic radiologist inspected the segmentation and, in the case of 

coarse anatomical misrecognition or inaccurate segmentation, manually guided the delineation. At 

this point, HRCT attenuation histograms were obtained. Proceeding further, we considered three 

different upper HU thresholds (−200 HU, 0 HU, and 200 HU) producing three derived HRTC 

histograms for each study. Finally, we calculated the values of the most common state-of-the-art 

HRCT parameters: PFF% [7], NL% [8], HAA%, LAA% [9], and HAA_A% [10], obtaining three 

different indices sets corresponding to each threshold. In addition to these parameters, other HRCT 

histogram indices including kurtosis, skewness, mean lung density (MLD), median, and variance 

were considered as well (Table 1). With concern to kurtosis, large values seem to indicate mild IPF, 

while low values may indicate severe IPF. Among the various formulas for calculating kurtosis, we 

used the formula which yields zero for a perfect normal distribution: 

�������� =
(� − �)�

[∑(� − �)�]�
− 3 (1) 

where x indicates density (ranging from −1024 to the selected upper HU threshold) and y is the 

mean attenuation value from the histogram [11]. Skewness describes the degree of asymmetry of a 

histogram, with a long right tail indicating positive skewness [11]. Table 1 presents a complete list of 

the HRCT parameters considered in our analysis. 

2.4. Statistical Analysis 

Statistical analyses were carried out using the computing environment R (R Development Core 

Team, 2005). Characteristics of the study population were expressed using mean and standard 

deviation (SD). FVC and DLco indices were put in relationship with HRCT measures. Their 

relationship was examined using several regression models (general linear model (GLM), 

generalized linear mixed model (GLMM), and vector generalized linear models (VGLM)) checking 

for potential differences at different thresholds for the upper limit of the whole lung (−200, 0, and 

+200 HU). A p-value less than 0.05 was considered significant.  

3. Results 

3.1. Subsection 

Patient’s ages ranged from 55 to 82 years (age mean ± SD, 68.34 ± 6.47), and 6 out of 32 patients 

were women. FVC and DLco were 89.03 ± 19.63% and 62.84 ± 17.06%, respectively. HRCT parameters 

were calculated considering the three different upper HU thresholds (−200, 0, and +200). 
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Representative images from patients with less severe (patient 1) and more severe (patient 2) evidence 

of IPF are shown in Figure 2. Histograms of distribution, pulmonary function tests, and some HRCT 

parameters are also reported for each subject considering HU < 200.  

 

Figure 2. Two representative clinical cases: HRCT images (left), HRCT lung histograms (centre), 

pulmonary function tests and quantitative parameters (right): (a) Patient affected by moderate 

idiopathic pulmonary fibrosis (IPF), (b) Patient with more severe evidence of IPF. Forced vital 

capacity (FVC), diffusion capacity for carbon monoxide (DLCO), PFF, NL, HAA, LAA, and HAA_A 

parameters are expressed in percentage values while kurtosis is expressed in absolute value. 

3.2. Exploratory Analysis 

Starting with an exploratory analysis of HRCT measures, the correlation between these 

measures was computed. Statistical synthesis measures of density (kurtosis, skewness, MLD, median, 

and variance) [11] were highly correlated at each threshold, as shown in Figure 3. As a result, we only 

considered kurtosis, given that it is the most useful measure in assessing patient condition, as 

reported in [9].  
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Figure 3. Pairwise scatter plot matrix, and correlation coefficients (ρ) of HRCT histogram indices 

including kurtosis, mean lung density (MLD), variance, skewness, and median at -200 (left), 0 (right), 

and 200 HU (centre).  

Kurtosis, PFF, NL, HAA LAA, and HAA_A of the 32 patients are summarized in Table 2 

considering the three different upper HU thresholds (-200, 0, and +200).  

Table 2. Mean (%) ± Standard Deviation (SD) and median values (%) of HRCT parameters obtained 

considering the three different HU thresholds. HAA, defined as the areas with attenuation values 

greater than −200 HU, is not shown in the first column. 

         −200 HU            0 HU            200 HU 

Parameters Mean ± SD Median Mean ± SD Median Mean ± SD Median 

NL% 65.12 ± 7.41  65.24 61.51 ± 6.68 62.96  58.99 ± 10.64 61.29 

PFF% 23.98 ± 8.25  22.71 26.84 ± 9.32 24.80  31.05 ± 11.94 26.40 

HAA% n.a. n.a. 14.84 ± 24.97 3.95 9.42 ± 10.99 4.88 

LAA% 8.51 ± 6.42  5.95 9.15 ± 5.50 6.95 7.19 ± 4.59 5.57 

HAA_A% 14.09 ± 4.87  13.61 14.16 ± 4.74 13.81 12.70 ± 4.40 12.23 

Kurtosis 1.49 ± 1.08  1.39 1.65 ± 3.02  1.69 1.91 ± 3.33 1.95 

n.a.= not applicable 

Their correlation varied consistently depending on the threshold, as shown in Figure 4 and 

further highlighted in Tables 3 and 4. HAA, defined as the areas with attenuation values greater than 

−200 HU, is not shown in Table 3 for the −200 HU threshold. Minimal differences between measure 

at −200 or 0 HU were identified, while at +200 HU the magnitude of the relationships changes 

noticeably. 
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Figure 4. Pairwise scatter plot matrix, and correlation coefficients (ρ) of HRCT histogram indices 

including NL, PFF, HAA_A, kurtosis, HAA, LAA at −200 (left), 0 (right), and 200 (centre) HU. HAA, 

being defined as the areas with attenuation values greater than −200 HU, is not shown in the first 

matrix. In NL, PFF, HAA_A, HAA, LAA parameters, the ‘%’ has been omitted for ease of reading. 

Table 3. Correlation matrix of HRCT histogram indices including NL, PFF, HAA_A, kurtosis, and 

LAA at −200 HU threshold. HAA, defined as the areas with attenuation values greater than −200 HU, 

is not shown. In NL, PFF, HAA_A, HAA, LAA parameters, the ‘%’ has been omitted for ease of 

reading. 

              HU: −200 

 NL PFF HAA_A Kurtosis LAA  

NL 1.00 −0.58 −0.60 0.62 −0.41  

PFF −0.58 1.00 0.99 −0.87 −0.50  

HAA_A −0.60 0.99 1.00 −0.90 −0.47  

Kurtosis 0.62 −0.87 −0.90 1.00 0.31  

LAA −0.41 −0.50 −0.47 0.31 1  
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Table 4. Correlation matrix of HRCT histogram indices including NL, PFF, HAA_A, kurtosis, HAA 

and LAA at 0 and +200 HU threshold. In NL, PFF, HAA_A, HAA, LAA parameters, the ‘%’ has been 

omitted for ease of reading. 

 HU: 0 HU: 200 

 NL PFF HAA_A Kurtosis HAA LAA NL PFF HAA_A Kurtosis HAA LAA 

NL 1.00 −0.65 −0.65 0.51 −0.10 −0.34 1.00 −0.83 −0.24 0.81 −0.76 −0.14 

PFF −0.65 1.00 0.99 −0.62 0.13 −0.49 −0.83 1.00 0.45 −0.90 0.79 −0.44 

HAA_A −0.65 0.99 1.00 −0.62 0.10 −0.48 −0.24 0.45 1.00 −0.36 −0.19 −0.40 

Kurtosis 0.51 −0.62 −0.62 1.00 −0.69 1.00 0.81 −0.90 −0.36 1.00 −0.77 0.29 

HAA −0.10 0.13 0.10 −0.69 1.00 −0.06 −0.76 0.79 −0.19 −0.77 1.00 −0.19 

LAA −0.34 −0.49 −0.48 0.19 −0.06 1.00 −0.14 −0.44 −0.40 0.29 −0.19 1.00 

3.3. Models Analysis 

As complex models are often hindered by convergence issues, we leveraged a Poisson model 

approximation to evaluate the relationship between the spirometry tests (FVC, DLco) and the HRCT 

measures. Poisson models were fitted over data using the score given from the Gender-Age-

Physiology (GAP) index [28] as the response variable, and each one of the HRCT measures at different 

thresholds as the explanatory variable. GAP provides a screening method to determine the average 

risk of mortality of patients with IPF stratifying them into three stages based on clinical (sex and age) 

and physiological (FVC and DLco) variables. It provides 1-, 2-, and 3-year mortality estimates. GAP 

stage 3 indicates the worst-case scenario.  

Table 5 highlights how the NL measure is most strongly related to the response (p = 0.009). In 

particular, it has at least one more point of log-likelihood (minimum value to affirm that two models 

do not contain the same information) beyond the second-best measure, which shows a borderline p-

value (0.047). Measures at 0 or -200 HU show no difference (correlation coefficient = 0.99), while 

measures at +200 HU seem to hold less information, although some measures are more robust than 

others to threshold choices. 

Table 5. Poisson models were fitted over HRCT data, using the Gender-Age-Physiology (GAP) index 

as a response variable, and each of the HRCT measures at different thresholds as explanatory 

variables. 

 
200 HU 0 HU -200 HU 

p-Value Log-lik p-value Log-lik P-Value Log-lik 

Kurtosis 0.28 −33.40 0.06 −31.97 0.047 −31.80 

NL% 0.08 −32.46 0.008 −30.68 0.009 −30.76 

PFF% 0.34 −33.54 0.12 −32.89 0.13 −32.94 

HAA_A% 0.10 −32.71 0.09 −32.66 0.09 −32.68 

HAA% 0.98 −33.96 0.85 −33.95 n.a.  n.a. 

LAA% 0.19 −33.22 0.24 −33.36 0.24 −33.36 

n.a.= not applicable 
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Mixed models, using FVC and DLco as response variables, were considered for the NL measure 

at −200 and +200 HU. A gamma distribution was assumed since FVC and DLco are both positive and 

continuous (logarithmic link for convergence problems). As shown in Table 6, NL seems to have a 

strong relationship with both responses whatever the threshold (p-value < 0.01). 

Table 6. Mixed models using FVC and DLco as response variables, and NL at −200 HU and +200 HU 

as the explanatory variable. The regression coefficient estimates (β) and their standard error (SE) are 

reported on the link function scale (natural logarithm -Ln-). For immediate reading, coefficient 

estimates were exponentiated (Exp). Finally, the comparison was carried out in terms of log-

likelihood (Log-lik). 

 
200 HU −200 HU 

β ̂ Exp (β ̂) SE [β ̂] p-value Log-lik β ̂ Exp (β ̂) SE [β ̂] p-Value Log-lik 

Ln (FVC) 0.006 1.006 0.002 7.38 × 10−4 −233 0.01 1.003 0.003 1.44 × 10−3 −234 

Ln (DLco) 0.007 1.007 0.003 8.61 × 10−3 −230 0.002 1.003 0.005 1.45 × 10−4 −227 

4. Discussion 

In recent years, many studies have focused on recognizing diagnostic indicators for complex 

diseases such as IPF. HRCT examinations present crucial advantages for the management of IPF 

patients, both because they provide increased accuracy and because they reduce the need for a lung 

biopsy. The non-invasiveness of HRCT studies, the large amount of data they provide, and the set of 

parameters, correlated to the disease that can be derived from such data, make HRCT a suitable tool 

for IPF studies. Unfortunately, most of the currently published studies are based only on qualitative 

evaluations of HRCT, with the drawback that visual analysis is time-consuming and therefore of 

limited use in clinical environments. Although several analysis methods have been proposed to 

objectively evaluate HRCT examinations, it is still not entirely clear which index should be adopted. 

Recent studies investigating histogram-based indices for IPF evaluations provided very promising 

results. Nevertheless, such investigations widely differ in terms of the type of software used to 

perform the analysis, and lack a standard definition of the HU range in which the whole lung volume 

should be measured. The major source of uncertainty is the upper HU threshold.  

We leveraged clinically acquired volumetric data in our study to investigate whether some 

correlation exists between densitometric HRCT measures and pulmonary functional tests. 

Additionally, as the choice of a proper upper HU threshold is a key source of uncertainty which has 

been poorly investigated in the literature, we explored the variability of these indices for different 

choices of HU ranges for parenchyma measurement. To date, choosing the upper HU threshold has 

been largely subjective rather than driven by true insight. Therefore, we focused on the three values 

which seem to be the most common options in the scientific literature (−200 HU, 0 HU, and +200 HU). 

For this reason, this paper addresses the HU threshold issue in quantifying HRCT indices, which 

must be understood to make them fully reliable and to set a proper standard in the field. Our analysis 

demonstrated relevant differences in the results by the three thresholds. Using the GAP index as the 

response variable and the HRCT measures at the three different thresholds as explanatory variables, 

we discovered that the best diagnostic performance is achieved for the −200 HU threshold, with the 

most significant variables being Kurtosis and NL (p = 0.049 and p = 0.009, respectively).  

The need to identify the best diagnostic performance is related to the increasing use of 

quantitative indices as biomarkers for monitoring disease behaviour. This biological behaviour needs 

to be defined not only on pulmonary function tests, but also on functional parameters obtained by a 

kind of radiomics analysis. Therefore, we sought to assess the correct method for quantitative 

analysis by exploring the relationship between pulmonary function test measurements and HRCT 

indices with a Poisson model approximation to identify the measurements of highest log-likelihood 

value. This relationship is very important in the management of diseases; some progressive patterns 

of disease, which have been now labelled as “progressive phenotypes of fibrosis”, will be monitored 
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by evaluating even very small variations of these functional and quantitative parameters. 

Consequently, the measurement of quantitative features extracted from HRCT images needs to be 

more accurate, and the methodology becomes relevant. Optimal performance is needed to assess 

diagnosis and to determine management. 

This study, however, has some limitations. For example, this kind of study may be influenced 

by the patient inspiration level. Additionally, an incorrect manoeuvre or the presence of artefacts may 

affect the extraction of quantitative parameters from HRCT examinations. Spirometric control was 

not used at the time of data collection. As such, given the retrospective nature of the study, we cannot 

ensure that inspiration was optimal during acquisition. Nevertheless, the quality of all HRCT studies 

was reviewed and approved by our radiologists before their inclusion within the present study. 

Further, our results were obtained from a relatively small number of patients, and validation on a 

larger sample would be advisable. Despite these limitations, our study showed a stronger 

relationship between NL and both the FVC and DLco parameters compared to the other HRCT 

measures considered. This suggests the usefulness of NL in association with pulmonary function test 

values as a diagnostic marker for disease behaviour. Nonetheless, this result could be affected by a 

low specificity (high false-positive rate) if applied blindly in a general lung disease patient group. For 

this reason, it is important to stress the need for further studies to evaluate its ability to predict patient 

survival and to better understand if it might also rival spirometry tests in terms of diagnostic 

performance. Specifically, a prognosis evaluation with a sufficient time interval to assess longitudinal 

disease behaviour will be reserved for an upcoming paper by comparing state-of-the-art HRCT 

features with transplant-free survival and with the variation of spirometry measures over time. 

Finally, because IPF affects males more frequently (ratio 2:1), the majority of patients in our study 

were male. Obviously, different genders exhibit different thoracic dimensions and configurations (for 

example, the lung region, ribcage dimension, and diaphragm length are comparatively smaller in 

females). In the future, we will systematically investigate the impact of such factors. 

5. Conclusions 

Based on our results, computer-based analysis provides a promising tool for the assessment of 

patients with IPF disease. In particular, among all the parameters we considered in the quantification 

of HRCT images, NL at −200 HU demonstrated the strongest correlation with disease severity. It can 

be leveraged for IPF diagnosis and to aid decision making in daily clinical practice. Studies featuring 

a larger patient population are advised to further confirm the present findings. 
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