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Abstract—We propose Directionally Paired Principal Com-
ponent Analysis (DP-PCA), a novel linear dimension-reduction
model for estimating coupled yet partially observable variable
sets. Unlike partial least squares methods (e.g., partial least
squares regression and canonical correlation analysis) that max-
imize correlation/covariance between the two datasets, our DP-
PCA directly minimizes, either conditionally or unconditionally,
the reconstruction and prediction errors for the observable and
unobservable part, respectively. We demonstrate the optimality of
the proposed DP-PCA approach, we compare and evaluate rele-
vant linear cross-decomposition methods with data reconstruction
and prediction experiments on synthetic Gaussian data, multi-
target regression datasets, and a single-channel image dataset.
Results show that when only a single pair of bases is allowed,
the conditional DP-PCA achieves the lowest reconstruction error
on the observable part and the total variable sets as a whole;
meanwhile, the unconditional DP-PCA reaches the lowest pre-
diction errors on the unobservable part. When an extra budget
is allowed for the observable part’s PCA basis, one can reach an
optimal solution using a combined method: standard PCA for the
observable part and unconditional DP-PCA for the unobservable
part.

I. INTRODUCTION

The dimension of useful features in data is generally much
smaller than that of the data themselves, which implies that
plenty of redundancy or irrelevant information exists in data
samples. Such a redundancy or irrelevance in data samples
often leads to unnecessary complexity and issues such as
the “curse of dimensionality” [1]. To mitigate those issues,
various dimension reduction approaches are invented to reduce
the number of variables under consideration by obtaining a
set of principal variables, among which Principal Component
Analysis (PCA) [2] is the most widely used one.

In principle, PCA handles a single set of variables (i.e.,
measurements) by maximizing the variance along the principal
components or equivalently minimizing the reconstruction
errors. In certain scenarios, we may have more than one set of
correlated samples. For those situations, Canonical Correlation
Analysis (CCA) [3], together with its general framework
Partial Least Squares (PLS) [4] methods, measures the lin-
ear correlation between two multi-dimensional variables by
seeking a pair of bases such that the corresponding variables
expressed in those bases are maximally correlated. Changing
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the objective to maximizing correlation, however, leads to sub-
optimal bases in terms of maximizing variance and minimizing
reconstruction errors for each respective set.

Our research on Directionally Paired Principal Component
Analysis (DP-PCA) originates from a use case in which we
have access to a pair of correlated datasets at training but can
observe only one of them at test time. Henceforth, the two
datasets are referred to as the observable and unobservable.
The goal of the special use case is to conduct dimension re-
duction for both the observable and unobservable variables and
provide high-quality reconstruction/predictions at test time. In
cases of both datasets being observable, we could develop two
independent PCA models for each, by which we might ignore
the correlation between the two sets and perhaps adopt higher
dimensional representation than necessary. One naı̈ve version
that considers the correlation between the two sets is called
joint PCA, in which we stack both sets of samples and extract a
single set of principal components. Such a technique forces the
model to learn the correlations between the two while keeping
the dimensionality lower than the sum of two independent
PCA models. In joint PCA, reconstruction for neither variable
set is optimal because the model’s capacity is split between
the two variable sets. Unfortunately, when one of the variable
sets becomes unobservable, the budget and efforts spent on
those variables will be in vain.

To overcome the above issue and achieve our goal for
the special use case, we derive DP-PCA, which minimizes
reconstruction/prediction errors of the coupled datasets by
minimizing the least-squares errors. In the unconditional sit-
uation, we pursue optimal prediction for the unobservable
variables regardless of the reconstruction of the observable
ones. In the conditional situation, we aim at the best possible
prediction for the unobservable under the premise that the
observable is optimally preserved. The major contribution
of the paper, therefore, is the proposed DP-PCA, a linear
dimension-reduction model for predicting the unobservable
part in a coupled variable sets by minimizing the least-squares
estimation errors, both unconditionally and conditionally on
the optimal reconstruction of the observable. In another con-
current paper, we explore the usage of the proposed DP-PCA
framework in the context of inversion problems.

The rest of the paper is organized as follows. Section II
presents the proposed DP-PCA approach. Section III reviews
related linear models for dimension reduction and estimation
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of coupled yet partially observable data, and address the
connections to the proposed DP-PCA. In Section IV, we
evaluate relevant dimension reduction and estimation methods
using data reconstruction and prediction experiments. Finally,
Section V concludes with discussions.

II. PROPOSED DIRECTIONALLY PAIRED PCA

In this section, we derive the Directionally Paired Principal
Component Analysis (DP-PCA) approach that best predicts
the unobservable from the observable through the linear di-
mensional reduction in both unconditional and conditional
scenarios. To begin with, we establish a notation system that
we will adhere to for the rest of the paper.

Let us assume that an M1 ×N matrix X = [x1 x2 · · · xN ]
and an M2×N matrix Y = [y1 y2 · · · yN ] contain the separate
collected components of pairs from N data measurements rep-
resented as vectors in RM1 and RM2 . In particular, xi and yi

represent the observable (high-confidence) and unobservable
(low-confidence) components of the i th data measurement,
respectively. We further assume that the mean values of both
sets of measurements are zero. If such a condition is not
satisfied, the respective means should be pre-subtracted from
each xi and yi for i = 1, · · · , N . In addition, let M1×L matrix
U = [u1 · · · uL] and M2×L matrix V = [u1 · · · uL] denote
the bases of dimension reduction for X and Y , respectively.
As a result of the dimension reduction, we obtain L×N matrix
A = [a1 · · · aN ] and B = [b1 · · · bN ] as the expansion
coefficients (i.e., low-dimensional representation) of X and
Y , respectively.

A. Optimal Estimation for the Unobservable Part

Inspired by the strategy in Partial Least Squares (PLS)
methods [4] for predicting the unobservable part Y from the
observable part X , we can derive the optimal pair of bases
U, V that directly minimizes the reconstruction error εY for
the unobservable part Y , regardless of any correlation between
the two variable sets X and Y . Henceforth, we refer to such
estimation as the optimal-Y (i.e., unconditional) mode of the
proposed DP-PCA. We start with the loss function on U, V :

εY (U, V ) =
1

N

N∑
n=1

‖yn − V UTxn‖2

=
1

N

N∑
n=1

yT
nyn − 2xT

nUV
Tyn + xT

nUV
TV UTxn (1)

Differentiating εY with respect to U and V , we obtain:

∂εY
∂U

=
1

N

N∑
n=1

−2xn

(
V Tyn

)T
+
(
2V TV UTxnx

T
n

)T
= − 2

N

N∑
n=1

xny
T
nV − xnx

T
nUV

TV

= − 2

N

(
XY TV −XXTUV TV

)
(2)

and

∂εY
∂V

=
1

N

N∑
n=1

−2ynx
T
nU + 2V UTxnx

T
nU

= − 2

N

(
Y XTU − V UTXXTU

)
(3)

Setting both matrix derivatives to zero yields the conditions:{
XY TV = XXTUV TV

Y XTU = V UTXXTU
or

{
XXTU = XY TV

(
V TV

)−1

V = Y XTU
(
UTXXTU

)−1

(4)
In certain situations, we would hope to estimate the un-

observable part under the premise that the observable part
is optimally preserved. Thus, only the condition in equation
(3) is taken account because U is pre-determined for εY . We
refer to such a mode as conditional DP-PCA. In reality, we
first derive the conditional version for inversion problems;
thus, we still call it DP-PCA and refer to the unconditional
version as the “optimal-Y” mode or unconditional DP-PCA.
The usage of DP-PCA in inversion problems is documented
in our concurrent paper titled “Dependently Coupled Principal
Component Analysis for Bivariate Inversion Problems.

B. Closed-form Solution

The solution to the conditional DP-PCA is straight-forward:
one should compute the basis U for the observable part via
standard PCA and apply the bottom-right formula in equation
(4) to obtain the paired basis V . For the rest part of the section,
we derive a closed-form solution for the unconditional DP-
PCA.

If we substitute V in the top left equation of (4) with
Y XTU

(
UTXXTU

)−1
as specified by the bottom right equa-

tion (thus, V T = (UTXXTU)−1UTXY T ), we obtain:

XY TY XTU
(
UTXXTU

)−1

=

XXTU
(
UTXXTU

)−1

UTXY TY XTU
(
UTXXTU

)−1

(5)

which can be further simplified by right-multiplying
UTXXTU on both sides:

XY TY XTU = XXTU
(
UTXXTU

)−1

UTXY TY XTU (6)

Therefore, the optimal pair of bases U, V which minimizes
the reconstruction error of the unobservable part Y can be
computed by solving the above equation (6) for U and
plugging the solution of U into the bottom right equation in
(4) for V .

Notice that if we allow any solution (not necessarily orthog-
onal matrices) to equation (6), then it is easy to show by direct
substitution that UW also solves the equation as long as W
is any invertible L× L matrix.

XY TY XTUW = XXTU
(
UTXXTU

)−1

UTXY TY XTUW

=XXTUWW−1
(
UTXXTU

)−1

(WT )−1WTUTXY TY XTUW

=XXTUW
(
WTUTXXTUW

)−1

WTUTXY TY XTUW (7)
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Thus, equation (6) depends only upon the column space of
U . We may exploit such a property and seek a solution to the
following simpler equation using any convenient choice of W :

XY TY XTU = XXTUW (8)

which has the exact same set of solutions. One sufficient
yet not necessary condition of the above equation (8) is the
following:

Y TY XTU = XTUW (9)

Now, if we perform an eigenvalue decomposition on the N×N
matrix Y TY and select L of the eigenvectors (with non-zero
eigenvalues) to form the columns of an N ×L matrix Z, and
store their associated eigenvalues in an L×L diagonal matrix
D, then we may write

Y TY Z = ZD (10)

Finally, solving
XTU = Z (11)

for U and setting W = D, we obtain a solution to equation
(9) and hence a solution to equation (6).

Technically, the proposed DP-PCA can be described as
a least-squares regression analysis using a low-dimensional
(i.e., principal) subspace. The abbreviation of the principal
least-squares regression, however, coincides with the existing
partial least-squares regression (PLSR). Therefore, we name
the method as DP-PCA, which also reflects the directional
prediction in the subspace of principal components.

The asymmetry of the proposed method is also reflected
in the solutions. For (conditional) DP-PCA, we first solve
the eigenvalue problem on XXT in standard PCA on the
observable part X , then minimize the least-squares prediction
error by setting the partial derivative of paired basis V to zero.
For the unconditional (“optimal-Y” mode) DP-PCA, we begin
by solving another eigenvalue problem on Y TY (not Y Y T ,
but their eigenvalues and eigenvectors are closely related), then
solve a linear equation by minimizing the least-squares error.

III. RELATED WORK

In this section, we review relevant linear approaches for the
estimation of coupled data and elaborate the connections to
the proposed Directionally Paired PCA.

A. Canonical Correlation Analysis (CCA)

A well-known yet symmetric method that also produces
a paired set of bases for a correlated pair of variables is
Canonical Correlation Analysis (CCA). First introduced in
[3], CCA manages to measure the linear relationship between
two multi-dimensional variables x = (x1, · · · , xm1)

T and
y = (y1, · · · , ym2

)
T . It seeks a pair of vectors a ∈ Rm1

and b ∈ Rm2 such that the linear combinations u = aTx =∑m1

i=0 aixi and v = bTy =
∑m2

j=0 bjyj maximize the correla-
tion ρ = corr

(
aTx, bTy

)
. The random variables u and v in R

are called the first pair of canonical variates. The methods then
iteratively seeks pairs of canonical variates that maximize the
above correlation, subjecting to the constraint(s) that the new

canonical variates shall be uncorrelated with previous canon-
ical variates. The entire process can take up to min(m1,m2)
iterations, and correlations between the canonical variates u
and v indicate correlations among the terms aixi and bjyj .

In practice, CCA is applied primarily for modeling and cor-
relation analysis, which tends to overfit data when it comes to
reconstruction and prediction. Its customized version, namely
Canonical Regression (CR) [5] [6], performs additional regres-
sion analysis in the low-dimensional subspaces, which enables
prediction of y from x.

B. Partial Least Squares Regression (PLSR)

The CCA approach can be considered the special mode “B”
of a more general framework named Partial Least Squares
(PLS) methods [4]. The equivalence between CCA and or-
thonormalized PLS is further addressed in [7]. One slight
difference between Partial Least Squares Regression (PLSR,
mode “A”) and CCA is that instead of maximizing the corre-
lation between X and Y as in CCA, the objective function
for maximization in PLSR becomes the covariance between
X and Y [8].

The PLSR approach has an “opposite” motivation compared
with the proposed conditional DP-PCA. In conditional DP-
PCA, we assume that the predictor X remains observable
with high confidence at all times and hope to predict the
values of unobservable low-confidence variables Y at test time
with the help of the correlation under the premise that X
is optimally preserved. On the contrary, the goal of PLSR
is to predict as accurately as possible the values of the
important predictands Y (which might be expensive to capture)
based on the less important predictors X (which are cheaper
to capture) by utilizing the covariance between the two. It
is, therefore, acceptable that the predictors X may not be
optimally reconstructed when necessary.

Mathematically, both CCA and PLSR can be formulated
as solving eigenvalue equations with slightly different matrix
coefficients [8] [9]:

B−1Aŵ = ρŵ (12)

in which for CCA

A =

[
0 Sxy

Syx 0

]
, B =

[
Sxx 0
0 Syy

]
, (13)

and for PLSR

A =

[
0 Sxy

Syx 0

]
, B =

[
I 0
0 I

]
, (14)

In the above equations, S·· are covariance matrices and I
stands for an identity block.

C. Correlation Analysis for Coupled Data

We can now compare the correlation analysis in relevant
approaches with the help of Fig. 1. Joint PCA maximizes the
full covariance matrix and obtains a concatenated basis, which
is split into U, V (Fig. 1a). Different from the original CCA
whose goal is to maximize the correlation corr(X,Y) between
the two sets of variables, the customized Canonical Regression
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(a) Joint PCA (b) Canonical Regression (c) PLSR (d) conditional DP-PCA

Fig. 1: Comparison on correlation analysis in related approaches.

(CR) first project both sets of standardized (i.e., subtracted
by mean and divided by standard deviation) variables into
the lower-dimensional subspace such that their own variance
is maximally captured. The regression coefficient is then
computed by maximizing the covariance terms constructed by
the paired standardized data after dimension reduction (Fig.
1b). As for PLSR, the loadings U,V and weights W,C
for transforms are estimated by maximizing the covariance
cov(X,Y), after which a regression analysis is performed be-
tween the scores (Fig. 1c). Finally, in the proposed conditional
DP-PCA, the correlation between X and Y is maximized by
sharing the expansion coefficients A in the lower-dimensional
subspace (Fig. 1d).

IV. EVALUATION OF DIMENSION REDUCTION VIA
RECONSTRUCTION AND PREDICTION

In this section, we evaluate the performance of rele-
vant dimension reduction approaches via data reconstruc-
tion/prediction experiments. We assume that better dimension
reduction methods are more capable of capturing the prin-
cipal components of the data and lead to lower reconstruc-
tion/prediction errors. The lower bound of the reconstruction
error is provided by independent PCA under the premise
that both groups of coupled data X and Y are observable
at all times (i.e., not practical). In reality, the paired data
are available only during training, and we no longer have
access to the unobservable variables Y at test time. Thus, the
experiment’s goal with involved dimension-reduction methods
is to both reconstruct the observable variables X and predict
the unobservable variables Y using the bases U , V learned
during training.

A. Experiment Design and Procedures

It should be highlighted that the purpose of the experiment
is to evaluate the relevant algorithms in terms of dimension
reduction rather than data reconstruction or prediction. At first
glance, one may argue that the goal of the experiment is also
achievable via auto-encoders [10] (i.e., for reconstructing the
observable variables X) and neural-network regressors (i.e.,
for predicting the unobservable variables Y as multi-target re-
gression). Those methods, however, fail to provide dimension
reduction and correlation analysis in a similar manner as the

involved algorithms do. In particular, correlation analysis is
missing in auto-encoders, and neural-network regressors are
not suitable for dimension reduction. Therefore, we consider
the following linear approaches in our experiments: inde-
pendent (standard) PCA,1 joint PCA,1 Partial Least Squares
Regression2 (PLSR) [4], Canonical Regression3 (CR) [5],
[6], and the proposed DP-PCA. Among the approaches, the
independent PCA serves as the lower bound of reconstruction
error, and both X,Y remain observable at all times. The
Canonical Regression (CR) approach is a customized version
of the Canonical Correlation Analysis (CCA), which supports
predicting the values of Y from X .

Following the notation defined at the beginning of II,
M1 and M2 denote the dimensions of observable (high-
confidence) and unobservable (low-confidence) variables in
a data sample, respectively. For each method, we compute
the paired bases (i.e., loadings) U, V with the training set,
reducing the dimensions of Xtrain, Ytrain from M1,M2 to L.
We then apply the corresponding basis U or rotations Xrot
for dimension reduction to the observable test data4 Xtest and
obtain the dimension-reduced data Atest with dimension L. The
observable part of the reconstructed test data X̂test is obtained
by taking the inverse transform of the dimension reduction
with its corresponding basis U or loadings U.

The prediction of the unobservable part Ŷtest is handled
differently in the involved approaches. For independent and
joint PCA, the basis V characterizes a transformation be-
tween the unobservable variables Y and their corresponding
dimension-reduced expansion coefficients (i.e., scores) B. The
only difference between independent and joint PCA is that
we assume Ytest remains available for computing Btest in
independent PCA whereas Btest is replaced by Atest in joint
PCA because only Xtest is available. To predict the values of
the unobservable part Ŷtest, both independent PCA and joint
PCA take the inverse transform of Btest. For PLSR, CR, and
the proposed DP-PCA, the basis/loadings V characterizes a
transformation from the expansion coefficients A (i.e., scores)

1scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA
2scikit-learn.org/stable/modules/generated/sklearn.cross decomposition.

PLSRegression.html
3in R: https://rdrr.io/github/jmhewitt/telefit/man/cca.predict.html
4Applying the basis U to Xtrain leads to expansion coefficient A.
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TABLE I: Storage requirement on dimension reduction ap-
proaches for coupled data.

Method Results to be stored after training

JPCA X̄, Ȳ : mean values of training data (size M1 and M2);
U, V : bases for X and Y (size M1 × L and M2 × L).

PLSR

X̄, Ȳ: mean values of training data (size M1 and M2);
σX, σY : std. of training data (size M1 and M2);
U,Xrot: loadings and rotations for X (both size M1 × L);
One of the following:
(1) V: loadings for Y (size M2 × L) and

R: regression matrix between A and B (size L× L),
(2) β = VR: regression coefficients (size M2 ×M1).

CR

X̄, Ȳ: mean values of training data (size M1 and M2);
σX, σY : std. of training data (size M1 and M2);
U,V: bases for X and Y (size M1 × L and M2 × L);
Ā, B̄: mean values in the subspace (size L);
σA, σB: standard deviation in the subspace (size L);
β: correlation coefficient between A and B (size L× L).

DP-PCA same as those in the J(oint) PCA

of the observable part to the unobservable data Y . To predict
the values of the unobservable test data Ŷtest, those three
approaches apply a prediction transform to Atest. Based on
the reconstructed and predicted values of the test data, we
finally compute the mean squared error per element between
{Xtest, Ytest} and {X̂test, Ŷtest}.

Table I provides a list of the storage requirement for
each approach to facilitate the reconstruction and prediction
process. The data structures are consistent with the publicly
available implementations discussed above. Compared with
baseline methods PLSR and CR, the proposed DP-PCA re-
quires minimal storage that remains the same as joint PCA.
In the following subsection, we introduce the benchmark
datasets for our experiments and report execution time for
those methods.

B. Benchmark Datasets and Execution Time

1) Datasets: We conduct experiments on three types of
datasets: synthetic, multi-target regression, and single-channel
image data. The details of those datasets elaborated as follows.

Synthetic data: We generate a data matrix D of size (M1+
M2) × N , containing N data measurements from a multi-
variate Gaussian distribution with random mean µM1+M2

and
random covariance matrix ΣM1+M2

. We then split the rows
of D into the observable part X with size M1 × N and
unobservable part Y with size M2 ×N . Thus, the correlation
between the two parts are established via the covariance matrix
ΣM1+M2 . By keeping 70% samples for training and the rest
for testing, the N data samples are further divided into training
set {Xtrain, Ytrain} and test set {Xtest, Ytest}. Following the
procedures illustrated in the previous subsection, the training
set is used for computing bases U, V and other required results
listed in Table I, whereas the test set is reserved for computing
reconstruction (for Xtest) and prediction (for Ytest) errors.

Multi-target regression data: As discussed at the begin-
ning of Chapter IV-A, predicting the values of the unobserv-
able variables Y can be formulated as a multi-target regression

9.43

7.73

40.44

578.48

22.70

0.51

1.09

5.40

1.08

0.62

8.93

6.64

35.04

577.40

22.08

0 100 200 300 400 500 600 700

DP-PCA

CR (Python)

CR (R)

PLSR

Joint PCA

Seconds

Training Testing Total

(a) Execution time for 100
runs (M1 = M2 = 128,

L = 32)

(b) Training time for 100 runs
(M1 = M2 = 128, L = 1 to

32)

Fig. 2: Comparison on execution time on the synthetic dataset.

problem. In multi-target regression datasets, the observable
variables X are called “features” while the unobservable
variables Y are considered “targets.” Among all 18 datasets
in [11], we select 4 of them which satisfy the following two
conditions. (1) the dimensions of both X and Y are larger
than 10 so that there is room for varying the dimension L of
the subspace, and (2) no missing values exist in the data.

Single-channel image data: We further repeat the exper-
iments on MNIST [12], which are real datasets with larger
dimensions than those of the multi-target regression datasets.
Pixels of each image are split into two halves as observable
and unobservable either (1) according to the sequence of
indices (i.e., sequential split) or (2) randomly yet consistently
across images (i.e., random split). In addition to measuring the
reconstruction/prediction errors, we also evaluate the classifi-
cation accuracy of the reconstructed data using a pre-trained
classifier.

2) Execution time: We report the execution time of each
method for 100 runs on the synthetic dataset in Fig. 2. The
execution time is benchmarked on a Ubuntu 16.04 Desktop
with 8-core Intel Core i7-6700K CPU @ 4.00GHz and 16GB
DDR4 RAM @ 2133MHz. In a strict sense, the reported
execution time does not necessarily demonstrate the time
complexity of the approaches because they are not optimized
uniformly. Instead, the chart in Fig. 2a reflects the experi-
ence with popular implementations that are publicly available.
According to the chart, the required training time for PLSR
is substantially longer than others. Besides, as illustrated by
Fig. 2b, the training time in PLSR also increases significantly
as the budget (i.e., the dimension of the target subspaces)
increases. As for the testing time, all approaches have testing
time fluctuated within a small range. We also compare the
execution time for CR between the original R implementation
and our translated version5 in Python, and find out that the
Python version is about 5 times faster. In sum, our python
implementation of DP-PCA is relatively faster than its open-
source competitors.

C. Experiment Results

Fig. 3 illustrates the reconstruction and prediction errors
on the synthetic multi-variate Gaussian data using involved

5https://gist.github.com/thelittlekid/89630241f5b90a838a7b583a5836d350
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(a) Reconstruction error on
Xtest

(b) Prediction error on
unobservable Ytest

(c) Total error on {Xtest, Ytest}

Fig. 3: Evaluation on dimension reduction via data reconstruction and prediction of coupled synthetic data. N = 104, M1 =
M2 = 128. Horizontal axis: dimension L of the target subspace (i.e., budget); vertical axis: reconstruction/prediction error.

approaches. During training, joint PCA shares the budget on
the dimension of the subspace L and between the observable
part X and unobservable part Y . Consequently, the principal
components of X are no longer optimal, and the effort spent
on Y is wasted because Y becomes unobservable at test time.
Such results motivate us to design DP-PCA that accounts for
both the correlation between X and Y , as well as optimally
preserving the observable part X . Thus, the reconstruction
error on the observable part X remains optimal for DP-PCA
and meets the lower bound given by the independent PCA.6 As
the objective of CCA (i.e., CR) is to maximize the correlation
between X and Y , neither bases are optimal in terms of
preserving information for data reconstruction. By design,
PLSR aims at predicting the unobservable part Y by leveraging
the covariance between the two variable sets X and Y , leading
to more precise predictions on Y yet larger distortion on X . If
we disregard the correlation and target at the best prediction
with the optimal-Y mode in unconditional DP-PCA, we can
further push higher the accuracy on the unobservable Y at the
cost of huge reconstruction errors on the observable X , which
are orders of magnitude larger and not suitable for plotting
with other methods in Fig. 3a.

Overall, when combining both observable and unobservable
variables (Fig. 3c), the proposed DP-PCA achieves the lowest
errors under the condition that only one pair of bases are
allowed. With an additional budget for the PCA basis of the
observable part X , we can fully enjoy the benefits from the
optimal prediction on Y using a combined method: applying
standard independent PCA for the observable part X and DP-
PCA in mode optimal-Y for the unobservable part Y (i.e.,
“pcaX-optimalY”). Theoretically, such a combination is the
best possible linear model for estimating coupled data.

Fig. 4 shows the reconstruction and prediction errors on
the 4 selected multi-target regression datasets. Despite slight
differences, results on real data exhibit a similar pattern as
those on the synthetic data in Fig. 3. On real data, the simplest
joint PCA does not necessarily lead to the largest errors,
even though the proposed DP-PCA consistently outperforms

6The proposed (unconditional) DP-PCA adopts standard PCA for the
observable part X; thus, the two curves (i.e., independent and dppca) in Figs
3a, 4a, and 5a overlap.

it. The pursue of maximum correlation from CR leads to
sub-optimal reconstruction on both the observable and un-
observable variables. With PLSR and the optimal Y mode
of DP-PCA, one may achieve lower prediction errors on the
unobservable part Y . When it comes to the total reconstruction
error, however, the proposed DP-PCA beats others with single
pair of bases most of the time (with a few exceptions on the
4th row scm20d dataset with large budgets L, but we are more
interested in lower-budget scenarios for dimension reduction).
The combined method of “pcaX-optimalY” remains to be the
best linear solution on real data. In Fig. 5, we further repeat
the experiments on MNIST [12], which is a real dataset with
larger input dimension. Results on MNIST agree with the
previous ones; when pixels are randomly split, the proposed
DP-PCA even obtains the lowest errors on both the observable
and unobservable variables (bottom row of Fig. 5).

Finally, to demonstrate the effectiveness in capturing prin-
cipal components of the signals, we classify the reconstructed
images using a pre-trained classifier, which was trained on
clean, complete samples. The experiment corresponds to a use
case in which half of the pixels (i.e., Ytest) are unobservable
at test time. Similar to Fig. 5, the pixels either missing
sequentially (i.e., the bottom half of the image) or random
yet consistently across images. Moreover, the other observable
half (i.e., Xtest) is interfered by zero-mean Gaussian noise
with σ = 0.3 (in an intensity scale of [0, 1]). The input
images to the classifier are built with two different modes:
mixture or reconstruction. In the mixture mode, we combine
the available Xtest with the predicted Ŷtest whereas in the
reconstruction mode, we integrate the reconstructed signal
for the observable part X̂test and the predicted Ŷtest. Models
for linear reconstruction and prediction are trained on 10,000
randomly selected samples from the original training set. In
contrast to retraining the classifier, the ground-truth labels are
no longer required for training those linear models.

Fig. 6 illustrate the classification accuracy on reconstructed
signals of MNIST images. Under low budgets (i.e., small L),
mixing the predicted unobservable Ŷtest from unconditional
(i.e., optimalY) DP-PCA with observable Xtest leads to highest
accuracy. As the budget becomes sufficiently large, replacing
the observable Xtest with the reconstructed version X̂test results
in higher accuracy. It is worth mentioning that even though
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(a) Reconstruction error on
Xtest

(b) Prediction error on
unobservable Ytest

(c) Total error on {Xtest, Ytest}

Fig. 4: Evaluation on dimension reduction via data reconstruction and prediction of real multi-target regression datasets [13],
[14]: (top to bottom) oes10, oes97, scm1d, and scm20d. Horizontal axis: dimension L of the target subspace (i.e., budget);
vertical axis: reconstruction/prediction error.

(a) Reconstruction error on
Xtest

(b) Prediction error on
unobservable Ytest

(c) Total error on {Xtest, Ytest}

Fig. 5: Evaluation on dimension reduction via data reconstruction and prediction of MNIST. L = 1 to 32, M1 = M2 (equal
split of variables). Top row: sequential split; bottom row: random split.
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(a) sequential missing (b) random-consistent missing

Fig. 6: Classification accuracy on partially observable and
noisy MNIST after reconstruction and prediction: half of the
pixels are missing and the other half noisy at test time.

that conditional DP-PCA obtain higher prediction errors on
Ŷtest than PLSR, it achieves lower errors both on X̂test and in
total, thus leading to the highest classification accuracy under
a larger budget.

D. Result Analysis

We now analyze the results in terms of degrees of freedom
(i.e., budgets) in the optimization process. The degrees of
freedom characterizes the number of free variables to be
optimized in each method. For independent, joint, and the
proposed DP- PCA, the budget equals the total number of
variables in U and V , that is, (M1 +M2)×L. When it comes
to PLSR and CR, an additional budget of L2 is introduced
to learn the mapping between the paired data after dimension
reduction. In an ideal case such as two independent PCAs,
the degrees of freedom are proportionally split between the
observable part X and unobservable part Y at a ratio of
M1 : M2, and each part of the budget is optimally spent
to minimize the reconstruction errors, respectively. When one
set of variables Y becomes unobservable, the corresponding
part of the budget is dissipated while the other part for X
is utilized in a sub-optimal manner to also take into account
the correlation between the two sets. The proposed DP-PCA
ensures that the budget spent on the observable part is utilized
optimally such that it maximally captures the variance and
minimizes the reconstruction error. The other part of the
budget on unobservable Y , moreover, is consumed in the best
possible fashion for minimizing the reconstruction error given
the shared expansion coefficients. As far as the optimal Y
mode, all budgets are allocated to predict the unobservable
part Y . In practice, we may assume that M1 and M2 are
much larger than L. Thus, the majority of the degrees of
freedom (i.e., (M1 + M2) × L) in PLSR is allocated for
maximizing the covariance between the two sets. The method
does not explicitly capture variance or minimize reconstruction
errors for the observable part X , sometimes leading to higher
reconstruction errors on the observable part. On the contrary,
with a better correlation and extra budget of L2 on regression,
it tends to better predict the values of the unobservable part
Y . In Canonical Regression, the most critical L2 degrees of
freedom are reserved for correlation analysis in the sub-spaces

instead of starting from the original high-dimensional data,
leading to worse prediction than PLSR. In addition, although
dividing the inputs by their standard deviation appears to be
a valid strategy for data visualization and regression analysis,
it is less desirable for minimizing reconstruction errors.

V. CONCLUSION

In conclusion, we make the following statements: When
estimating coupled yet partially observable data using linear
models, one can achieve the lowest overall reconstruction
errors by applying standard PCA for the observable part X
and the optimal Y mode of the proposed unconditional DP-
PCA for the unobservable part Y . Such a combined approach,
however, requires two separate sets of bases, resulting in
longer computation time and larger storage. When the unob-
servable part Y is no more critical than the observable part
X , the proposed conditional DP-PCA approach can achieve
the lowest total error in estimation with a single pair of bases
at a fast speed.
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