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Abstract
Remote sensing radar techniques provide highly detailed imaging. Neverthe-
less, radar images do not offer directly retrievable representations of shape
within the scene. Therefore, shape reconstruction from radar typically relies on
applying post-processing computer vision techniques, originally designed for
optical images, to radar imaging products. Shape reconstruction directly from
raw data would be desirable in many applications, e.g. in computer vision and
robotics. In this perspective, inversion seems an attractive approach. Neverthe-
less, inversion has seldom been attempted in the radar context, as high frequency
signals lead to energy functionals dominated by tightly packed narrow local
minima. In this paper, we take the first step in developing a framework in which
radar signals and images can be jointly used for shape reconstruction. In par-
ticular, we investigate the feasibility of shape reconstruction by inversion of
pulse-compressed radar signals alone, collected at sparse locations. Motivated
by geometric methods that have matured within the fields of image processing
and computer vision, we pose the problem in a variational context obtaining
a partial differential equation for the evolution of an initial shape towards the
shape-reflectivity combination that best reproduces the data. While doing so,
we highlight several non-obvious difficulties encountered and discuss how to
surpass them. We illustrate the potential of this approach through three simu-
lated examples and discuss several implementation choices, including boundary
conditions, reflectivity estimation, and radiative models. The success of our
simulations shows that this variational approach can naturally accommodate
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radar inversion and has the potential for further expansion towards active sur-
faces and level set applications, where we believe it will naturally complement
current applications with optical images.

Keywords: radar, shape reconstruction, reflectivity estimation, variational
methods, high frequency, noncoherent, inversion

(Some figures may appear in colour only in the online journal)

1. Introduction

Inverse methods, where measured data are compared with simulated output from a model to
recover the optimal values of the parameter set controlling the response of such model, have
been widely applied in many disciplines (Groetsch 1984, Tarantola 2005). For example, geo-
physics (Loke and Barker 1996, Herman 2001, Park et al 1999, Louie 2001), engineering and
non destructive testing (Sambuelli et al 2011, Cosentino et al 2011), medicine (Hounsfield
1973, Bertero and Piana 2006, Comelli et al 2020), computer vision (Hailin et al 2002, Yezzi
and Soatto 2003), and remote sensing (Deepak 1977).

Inversion techniques have also been applied to tackle shape reconstruction. These include
the variational approaches (commonly encountered in computer vision) which express the iter-
ative optimisation in form of a partial differential equation (PDE); active surfaces and level set
methods being among the most popular. In the context of computer vision, active surfaces have
been exploited both for the segmentation of data volumes (Yezzi et al 1997, Cheng et al 2009,
Haukas et al 2013, Shafiq et al 2015, Comelli et al 2020) and for the reconstruction of the
three-dimensional shape of an object of interest using images acquired from sparse cameras
(Yezzi and Soatto 2003, Hailin et al 2002, Jin et al 2003, Gallego et al 2011). These methods
rely on partitioning the 3D space by means of a surface which is iteratively evolved until it
wraps around the object of interest. Typically, the task is posed as a classic local optimisation
scheme, where the geometric surface is evolved in order to minimise an energy. While shape
reconstruction from images finds several applications, e.g. in robotics and computer vision,
optical approaches have many limitations. The inclusion of radar sensing within such inver-
sion frameworks would be very desirable, as radar can easily be employed at night time and
can probe a scene even when weather conditions would hinder optical alternatives. However,
before visible/radar joint inversion can be tackled, it is necessary to investigate the feasibility
of handling radar data within existing variational schemes. In particular, candidate adaptations
of such inversion schemes should be sufficiently stable to allow shape reconstruction from
radar data alone. We devise an inversion approach to simultaneously reconstruct shape and
reflectivity of a three-dimensional structure (scene) directly from measured radar data
(i.e. high frequency back scattered electromagnetic signals), collected at sparse locations.
Our approach to the problem will blend concepts from different scientific domains. As such,
before fully describing our contribution (section 1.3), we provide a brief introduction from the
domains of radar remote sensing and waveform inversion.

1.1. Radar remote sensing

Established radar imaging techniques leverage recording the reflected echo signal, most often
a linear chirp signal (e.g figure 1(a)), back-scattered towards the emitting antenna. Echoes
recorded at multiple locations, either by antenna arrays or by moving antennas are used to
acquire multi-view information from which an image of the illuminated scene is formed.
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Figure 1. (a) Example of Linear Frequency Modulated signal in the C band (LFM
up-chirp). Frequency increases from fmin = 4 GHz to fmax = 6 GHz (wavelength
λ ∈ [5, 7.5] cm), over a 50 μs active time (first 1.5 μs are shown). (b) Signature of
a point scatterer. The result after pulse-compression on the LFM signal shown in (a),
corresponding to equation (3) computed at τ d = 0, is shown in black. The same pulse,
delayed by 4.5 periods (τ d = 4.5/ fmin), i.e. about 22.5 cm apart, is shown in red. (c)
Example of energy function (equation (1)) for the simple case of a lone point scatterer
scene, as a function of the distance between the true location of the scatterer and the
initial input provided to a hypothetical inversion. The red dot shows the energy loca-
tion corresponding to signals in (b), where u and u0 are associated to the red and black
line, respectively. Despite the small delay, configuration in (b) is already in the basin of
attraction of a local minimum. Notably, energy is dramatically non-convex and the mul-
tiple narrow local minima are the practical manifestation of cycle skipping at such high
frequencies. Under these conditions, inversion would remain trapped around the initial
model and fail.

Historically the development of this technology was application-specific and implementation
choices were dominated by hardware capabilities. A wide variety of approaches to the image
formation exist nowadays (Curlander and McDonough 1991, Carrara et al 1995, Soumekh
1999), and a thorough review is beyond the scope of this paper.

The synthetic aperture radar (SAR), in all its flavours, might be considered a good example
of this entire class of applications (Curlander and McDonough 1991, Carrara et al 1995,
Soumekh 1999). SAR leverages a moving antenna, emitting pulses at regular intervals to illu-
minate the scene from multiple viewpoints. Fundamental aspects of each data acquisition are
the choice of working parameters related to the emitted signal, such as: frequency band, pulse
duration; as well as geometric parameters, such as the number and locations where the sig-
nal is emitted/collected and antenna orientation, all of which rule the achievable resolution of
the produced image. In Stripmap mode SAR (Munson 1987) for example, the antenna moves
along a straight line and has a fixed orientation with respect to direction of the movement. In
spotlight mode SAR, the antenna is moved instead along a linear or circular trajectory while
the beam is steered to point the scene (Curlander and McDonough 1991, Carrara et al 1995,
Soumekh 1999). Concerning data processing, if we focus on just one of these approaches, the
‘holographic approach’ (Farhat 1975), for example, we must emphasise that in order to trans-
late the data from the aperture-range domain (i.e the antenna locations—distance to the scene),
to the space-space domain (i.e. the image), signal processing techniques (typically, pulse com-
pression and Stolt formatting), although involved, are sufficient to achieve the final result
and no inversion is necessary. This consideration remains true for the most recent volumet-
ric SAR (VOLSAR) which exploits the holographic approach to produce a three dimensional
reflectivity volume (Barnes and Prasad 2018). It is a common denominator of all radar-based
approaches to search for ever higher resolutions of the produced image.

Ultimately, the key aspect of SAR processing is that, in order to form such an image
and correctly achieve the maximum pixel-wise resolution, the information from the echoes
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at different antennas must be coherently summed (i.e. phases must be synchronised to the
wavelength level). Such a careful handling of signal phases requires extremely precise control
of the antenna collocation, which becomes a limitation as the frequency band of the emitted
signal increases.

Shape reconstruction has been investigated in the radar imaging context as well. For
example, (Das and Boerner 1978) proposed an approach based on the Radon transform show-
ing that the challenge is equivalent to the problem of image reconstruction from projections.
In this early approach radar signals were Fourier transformed to the frequency domain, and
only a subset of frequencies were considered for the shape reconstruction. Gonzalez-Valdes
et al (2013) used an iterative algorithm coupled with a frequency hopping strategy to retrieve
the shape of a two dimensional perfect electric conductor body from data collected at several
transmitting–receiving antennas placed around it. Shape reconstruction finds application also
for the determination of asteroids shape from delay-Doppler radar images (Hudson 1993, Bro-
zovic et al 2009). These methods are related to techniques in inverse SAR (Walker 1980). SAR
interferometry (ifSAR) (Bamler and Hartl 1998) is routinely used to obtain land digital eleva-
tion models (DEM), or to monitor elevation changes over time from a reference DEM. This
approach leverages phase difference between pairs of SAR images obtained from data collected
either at slightly displaced trajectories or at different times. Three dimensional reconstruction
is also tackled combining SAR and polarimetry (Cloude 2010), as polarization effects expe-
rienced by electromagnetic waves when reflected by the scene carry a wealth of information
about the 3D nature of the scene. With these approaches, 3D images (i.e. data volumes) can
be successfully obtained (Hamasaki et al 2005). Additional methodologies attempt extracting
complex geometric features adopting stereo or stereogrammetry based strategies (Koyama et al
2016, Bagheri et al 2008).

Summarising, shape reconstruction in radar applications is mostly achieved starting from
images. Formation of such images requires careful processing and a regular acquisition geom-
etry of the synthetic aperture in order to achieve the necessary coherent summing. Only after
image formation is the shape reconstruction challenge finally cast into an inversion framework.
An interesting observation about shape reconstruction from SAR images is brought by Thomas
et al (1989). They leveraged active surfaces for reconstruction of land topography exploiting
the difference in shading between multiple SAR images and pointed out that the geome-
try can only be recovered with much lower resolution when compared to the initial images.
Indeed, SAR images typically possess a detailed pixel-level granular structure (speckle), which
requires strong regularisation in order to make the energy functional sufficiently smooth for
stereo reconstruction and local minimisation techniques. The key lesson is that the level of
detail needed to make radar images most useful for human visual inspection is unnec-
essary to reconstruct the general shape of a scene, and we could therefore conceptually
avoid coherent summation. In turn, this means we could build our shape reconstruction
on the inversion of individual echo signals, avoiding image formation entirely.

1.2. Inversion of oscillating signals

Limited preliminary work (Bignardi et al 2012, Cook et al 2014, Yildirim and Yezzi 2018)
has demonstrated that shape reconstruction directly from remotely sensed oscillating signals
is feasible, provided that a proper energy functional is defined. To construct a well behaved
radar-based energy functional we must first deal with the oscillatory nature of radar signals.
In this sense, an interesting example is found in geophysics, in the context of full waveform
inversion (FWI). In FWI, seismic signals collected by an array of geophones are used in the
framework of inversion to infer the P-waves velocity distribution in the subsurface (Virieux
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and Operto 2009, Raknes and Arntsen 2014). FWI tackles such a task by minimising the
distance between measured and simulated seismograms (either expressed in time or frequency
domain), leveraging a residual error function E posed in least squares form. Considering just
one receiver:

E =
〈(

u − u0
)

,
(
u − u0)〉 = ∫ (u(s) − u0(s)

) (
u(s) − u0(s)

)∗
ds, (1)

where s is either time or frequency. To be successful, the local optimisation requires a smooth
energy functional and the initial model must be already in the basin of attraction of the global
minimum. Unfortunately, an energy defined as in equation (1), based on the difference of oscil-
lating signals possesses a large number of local minima. A difficulty strictly related to this
aspect is the commonly known ‘cycle skipping’, effectively illustrated in figure 7 of Virieux
and Operto (2009). This phenomenon is easily understood considering the frequency domain.
While cycle skipping typically affects several frequencies simultaneously, let’s consider just
one as example. When the harmonic of the simulated signal nearly matches the corresponding
harmonic in the data, but shifted by an integer number of periods, the energy minimisation will
push the contribution of that frequency to the energy functional towards a local minimum and
therefore, to a incorrect model. It is important to note that cycle-skipping affects both the
time and frequency domain; and becomes increasingly severe as frequency increases. In
the frequency range typically investigated by FWI (i.e. <100 Hz), the initial model already
needs to be ‘very good’ (typically a smooth version of the reality) for the inversion to succeed.

Since radar sensing leverages a much higher frequency range, managing cycle skipping
is crucial to the feasibility of our application. Therefore, in the ‘Method’ (section 2) we will
illustrate such a phenomenon in the radar inversion context (figures 1(a) and (b)), and propose
a strategy to tackle this issue.

1.3. Motivation and contribution of the present work

Optical devices provide information on two lateral dimensions (i.e. the two dimensions in an
image). Radar conveys information on the range (i.e. depth), which is precisely the dimension
that is lost in optical imaging. Therefore, combining optical and radar data would convey, in
principle, complementary information that could be powerfully exploited within the context
of a unified inversion framework. In our view, active surfaces and the level set method would
provide the ideal environment, as they can naturally handle topological changes of the geomet-
ric model (i.e. the shape) being reconstructed. However, in order to explore the feasibility of
using these mathematical frameworks with radar data, we first investigate the simplified case
in which the surface of interest is parametrized in form of a graph of a function. While with
this simplification the surface is not technically an active surface anymore, its evolution still
belong within the general family of variational methods and more importantly, conclusions can
be easily generalised to active surfaces.

Developing a unified framework requires investigating the mathematical foundation to
include radar information in the variational approach, and this task represents a stand-alone
reconstruction problem.

In this paper, we leverage radar signals (i.e. high frequency back scattered electromagnetic
signals) emitted and received by a set of sparse antennas to reconstruct shape and reflectivity
of a three-dimensional structure. We develop a time domain approach to the reconstruction
problem by leveraging time-domain signals after pulse compression. Methods motivated by
a similar philosophy can also be formulated in the frequency domain, and we indeed develop
such a strategy by leveraging stretch processing in a concurrent companion paper (Yildirim et al
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2020). This paper (and its companion paper) take a first step towards establishing a frame-
work in which optical approaches and radar can naturally blend and where well established
approaches from computer vision can be fully exploited.

In what follows we describe a general approach for embedding high-frequency signals in a
local inversion mathematical framework. What we obtain, is a variational method from which
a partial differential equation for the evolution of an initial shape towards the shape that best
reproduces the radar data is obtained.

Therefore, differently from traditional radar approaches, which focus on image formation
first, and differently from the computer vision domain where PDE methods on images are well
established and do not pose any challenge, we tackle the reconstruction problem directly by
inverting the signals back-reflected from the scene. Even with the graph surface simplifica-
tion, we show that inclusion of such highly oscillating signals in variational methods and PDE
poses several nontrivial challenges that must be carefully addressed before moving towards
active surfaces, which will be a matter for future work. In the following, we illustrate both
challenges and solutions by means of three examples possessing increasing level of sophisti-
cation. We emphasise that the graph surface is used only for mathematical convenience and
not to tackle radar applications for which a well established approach already exists (e.g. land
topography estimation). On the contrary, our interest is in 3D shape reconstruction as it is often
encountered in robotics and computer vision applications. In examples 1 and 2, we use two dif-
ferent radiative assumptions and show how a piece-wise constant reflectivity can be estimated.
While in these examples the shape to be reconstructed is relatively simple, in example 3 we
show how both shape and reflectivity can be retrieved even for a shape model possessing high
curvature features and occluded visibility. In addition, example 3 will investigate the case of
noisy simulated data.

2. Method

We consider a scene/object probed by a set of A sparse radar antennas or alternatively, by
one antenna moving along an irregular trajectory and probing the object from A locations. We
assume that a linear frequency modulated (LFM) chirp pulse is emitted, and the corresponding
echo is recorded at same location xa, where index a identifies a specific location. Recording
locations, as well as the parameters characterising the emitted signal are assumed known. With
this premises, we assume our data to comprise A time series, after pulse compression has been
applied. In the following we will refer to these quantities as ‘raw signals’ or ‘raw data”. In our
inversion scheme, we consider a model in which the back scattering object can be represented
by a smooth surface S on which a smooth, complex reflectivity g (viz a continuous distribution
of point scatterers), is defined. Such surface is iteratively evolved in order to minimise the
following general energy functional:

E
(
u(S, G), u0

)
= E

(
u(S, G), u0

)
+

α1

2
RS +

α2

2
RG, (2)

where u0 is an observable derived from the raw data and u(S, G) is the corresponding simulated
signal, which depends on the surface S and through the quantity G = gg∗, on the reflectivity
defined on it. From now on, we will refer to u0 as the ‘preprocessed’ signal (or data) and to
G as the ‘reflectivity function’.E

(
u(S, G), u0

)
is the error function (or misfit) between u(S, G)

and u0, i.e. the distance in the data space, which we will later cast in least squared form, while
(S, G) corresponds to a point in the the parameter space (i.e. the space of all possible scene
geometry and reflectivity combinations). The RS , RG are regularisers to enforce smoothness
on the shape and reflectivity function while α1 and α2 are weighting constants.
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To build a successful inversion we must define a proper energy functional as smooth and
convex as possible. Following Oliver (1989), there is direct connection between the time sig-
nature from a point scatterer and its location in space. Besides terms affecting amplitude, the
echo of an LFM chirp produced by a single point scatterer (figure 1(a)), after conversion to
baseband and pulse compression (figure 1(b)), corresponds to

φ̂
(
t′, τd

)
= sinc

[
βT
(
t′ − τd

)]
exp (−iωcτd), (3)

where t′ is time, τ d is the round-trip delay-time, ωc is the carrier frequency, and β is the chirp
rate. τ d may be related to the distance r = ‖x − xa‖ between the locations of the point scat-
terer x and the antenna by τ d = 2r/C (with C denoting the speed of light). This allows us to
switch between time and range. In the following, we will often use range to label the figures’
horizontal axis, as its interpretation is more intuitive with respect delay time. We can expect
the echo from the entire object to be well modelled as a superposition of terms like (3). When
we introduced the cycle skip phenomenon, we highlighted that a least squared minimisation
built on differences between oscillating functions leads to an energy possessing numerous local
minima, and that this problem worsens as the frequency increases. Therefore, we can easily
anticipate that the corresponding energy functional would present an intractable number of
local minima if raw data were considered as they are. Intuitively, to be in the basin of attrac-
tion of the global minimum would require providing an initial shape within a few wavelengths
(λ) of distance from the true model. In other words, we would already know the shape. For
example, let’s consider a scene consisting of just one point scatterer probed using the C-band
LFM chirp of figure 1 (frequency band 4–6 GHz and pulse duration 50 μs). The antenna is con-
sidered to be at a distance of 20 km. Figure 1(c) shows the energy functional [equation (1)],
as a function of the distance of a hypothetical initial guess from the true location. Notably, not
only does the function present numerous close local minima, but it is also not convex. In this
simple example, the inversion would lead to the correct solution only if the initial model (i.e.
the scatterer location) was chosen within four wavelengths (ca 20 cm) from the true position.
The red dot highlights the energy value computed using the black and red pulses of figure 1(b)
as true and simulated signals, respectively. The initial guess is only 22.5 cm (4.5λ) from the
true location, yet the inversion is already destined to an unwanted local minimum. Even worse,
since minima are narrow and tightly packed, an inversion would barely move from the provided
initial guess.

A consideration to make is that historically, radar imaging focussed on achieving the maxi-
mum pixel-wise resolution, for which the coherent sum of signals like equation (3) is a funda-
mental element. The price is that at a very small scale, the constructive/destructive interaction
of point spread functions from different point scatterers is responsible for the speckle forma-
tion. In contrast, such a level of resolution is not actually necessary for shape reconstruction.
In fact, amending for the presence of speckle is the main reason why the Shape from Shadows
approach (Thomas et al 1989) requires strong regularisation, eventually resulting in lower res-
olution. Following this consideration, note that if we consider the squared form of equation (3)
the term oscillating with ωc cancels and we are left with

P(t′ − τd) = φ̂ φ̂∗ = sinc2
[
βT(t′ − τd)

]
. (4)

Nevertheless, equation (4) still retains an oscillating behaviour that must be properly addressed.
When the echo from the entire surface is considered, we can lessen the oscillations introduced
by terms such as (4) by smoothing the signals with a moving averaging window. Therefore the
back-scattered, pulse compressed echoes φa (τ ) recorded on the interval [tmin, tmax] by antenna
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a will be preprocessed according to

u0
a (t) =

1
ΔT

∫ t+ΔT/2

t−ΔT/2
φa

(
t′
)
φ∗

a

(
t′
)
w(t′)dt′, (5)

while the response of our model (i.e. the forward model) can be computed according to

ua (t) =
1
ΔT

∫ t+ΔT/2

t−ΔT/2

[∫
S
V GRw(t − τd(r))

r4
P(t′ − τd)dS

]
dt′, (6)

whereΔT is the window’s width,V is a binary visibility indicator function along the surface,R
is a radiative function which accounts for how the energy is absorbed/irradiated by the surface
and w is a temporal averaging window.

Since the evolution of a general three-dimensional surface is particularly involved (the sub-
ject of a future paper in which level set methods will be exploited for more general surface
modelling flexibility), for the purposes of the present investigation we consider a simplified
approach in which the surface is modelled as the graph of a function z(x, y), i.e. S(x, y) =
(x, y, z(x, y)), representing heights over a fixed 2D spatial domain Ω ⊂ R2. In turn this allows
us to similarly parameterise the various functions defined on the surface S as follows:

z : Ω→ R = z (x, y) ,

S : Ω→ R
3 = S(x, y) = (x, y, z(x, y)),

N : Ω→ R
3 = N(x, y) =

(
∂z
∂x

,
∂z
∂y

, 1

)
/

∥∥∥∥
(
∂z
∂x

,
∂z
∂y

, 1

)∥∥∥∥ ,

r : Ω→ R = r (x, y) =
√

(x − xa)2 + (y − ya)2 + (z(x, y) − za)2,

G : Ω→ R = G (x, y) ,

R : Ω→ R = R (x, y) . . . may depend on both S(x, y) and N(x, y),

τd : Ω→ R = τd(x, y) =
2 r(x, y)

C
,

(7)

where N is the unit outward normal, and the integral of any generic function f on the evolving
domain S (or on a portion of the same), can be rewritten as:∫

S
f dS =

∫
Ω

f ‖J‖ dx, (8)

where ‖J‖ =

√
1 +
(
∂z/∂x

)2
+
(
∂z/∂y

)2
is the Jacobian of the change from the surface area

dS to the 2D spatial measure dx. Finally, we are ready to introduce the explicit form of our
energy functional as:

E =

A∑
a

∥∥ua − u0
a

∥∥2
+

α1

2

∫
S
‖∇z‖2 dS +

α2

2

∫
S
‖∇G‖2 dS, (9)

where the functional norm ‖ · ‖ is built from its related inner product < ·, · > as follows

〈 f1, f2〉 =
∫ tmax

tmin

f1(t) f ∗
2 (t)dt, ‖ f‖2 =

∫ tmax

tmin

f(t) f ∗(t)dt. (10)
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Equations (5)–(10) define our inversion framework. It is particularly worth noting that in this
form, the shape reconstruction problem is formulated in terms of signal amplitudes, while
the ‘phase curtain’ (Barnes 2015), classically leveraged by SAR imaging is actually not used.
While this aspect may seem strange to an SAR expert, we must emphasise that by posing the
problem in the inversion framework and providing an initial explicit shape to be optimised, we
leverage information that is not available in traditional approaches. On the one hand, dropping
the coherent summation forces us to perform the reconstruction to a lower resolution with
compared to traditional SAR. On the other hand, we gain the capability of using sparse antennas
and avoid limitations at very high frequencies.

In equation (6), the integral over a time window centred at t, translates to a sample of the sim-
ulated preprocessed signal. Geometrically, such a time window identifies two spherical shells
of radius C

2 (t −ΔT/2) and C
2 (t +Δ/2), and the echo from the portion of surface included

within these shells provides the most significant contribution to the simulated sample. Never-
theless, the support of P is in general wider than any practical choice of averaging window and
the tails of this function, leaking outside the present window span, are captured within neigh-
bouring time windows and in turn, contribute to neighbouring samples of the preprocessed
signal. Conversely, part of the energy from neighbouring windows may leak into the present
one. Recalling that we assumed the surface to be a continuous distribution of point scatterers,
and recalling that the main lobe of the sinc function [equation (3)] associated to each scatterer
approximately spans half a wave length around its location, if the width of the averaging win-
dow is chosen large enough, the sinc2 term (i.e. P) may be substituted with the Dirac delta
function and speckle does not need to be modelled.

Considering a realistic scene, this simplification implies that for a given finite portion of
surface included in the above mentioned shells the cumulative effect of the sinc2 tails leaking
outside of the surface’s borders (in terms of delay-time or range), should be negligible. Figure 2
summarises the result of a set of experiments performed to prove that this simplification is
indeed acceptable. We considered a squared patch of 1 m2 containing a sufficiently high num-
ber of randomly placed point scatterers (104 in the shown example), so to simulate a dense,
yet realistic, distribution. Antenna is assumed 20 km far from the patch centre. Figure 2(a)
shows an example from the 104 configurations generated by randomly placing 104 point scat-
terers. Subsequently, we computed the echo φ from all the different patches as a superposition
of terms like equation (3), (same simulation parameters as in figure 1). Figure 2(b) shows (in
grey and normalised) the functionφφ∗ computed for all the 104 scatterer configurations [i.e. the
quantity being integrated in equation (5)]. The mean and the standard deviation are drawn in
black and red, respectively. Ranges corresponding to the patch edges are highlighted and the
average amplitude within this interval (A0) is used as normalisation constant. Notably, even
though these functions are quite chaotic at the small scale, two different regimes can clearly be
observed. In particular, the amplitude suddenly drops at the patch’s edge. Figure 2(c) shows a
magnification of the small squared portion at the bottom left of figure 2(b) and shows that after
just one wavelength (c.a. 5 cm) the amplitude is reduced to 5% of A0, confirming that sinc2

tails are indeed negligible and the use of the Dirac delta in place of P is justified. Additionally,
these functions show almost identical integral values [computed according to equation (5)],
with difference smaller than 0.003% (figure 2(d)), confirming that the small-scale details of
the scatterers distribution has negligible effect on the preprocessed signals. It is worth men-
tioning that in order to approximate a continuous distribution we repeated this experiment with
increasingly larger numbers of point scatterers: 104, 105, 106, and 107; obtaining consistent
results.

Moving forward, equation (9) represents the most general form of this optimisation
problem, where both z and G are evolved from an initial guess. Nevertheless, as we will show
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Figure 2. Experiment confirming that the term P in equation (6) can be substituted with
a Dirac delta. (a) Example of 104 randomly generated scatterers. (b) Comparison of func-
tions φφ∗ [i.e. the quantity being integrated in equation (5)] computed from individual
signals φ backscattered by the 104 scatterer configurations like the one shown in (a),
which highlights the change of regime at the distribution boundary. In all figures within
this group delay times were converted to range as well as multiples of the wave length.
Radar parameters are the same as figure 1. The solid black line and the dashed red lines
represent average and standard deviation, respectively. (c) Detail of (b). Showing that
beyond the patch boundary tails of the signal fall under 2% of the maximum amplitude
within 2–3λ distance (few cm) and therefore are of negligible concern to our approach.
(d) Integral values of signals. Histogram shows the distribution of values around the aver-
age. Discrepancy is lower than 0.003%, demonstrating that the time-windowing strategy
is robust to short-scale features (speckle).

later, given a reference shape the optimal G can actually be directly estimated. Therefore, in
the following we will drop the optimisation of G and the corresponding regularising term.

Implementation of such an inversion approach requires to perform several design choices:
(1) since the scene is a graph of a function, we must adopt a suitable boundary condition at
the surface edges. (2) decide which kind of averaging window is acceptable and (3) establish
the correct radiative model. In the following we will discuss these aspects. Finally, due to
the difficulty of obtaining a real-world dataset suitable for such an unconventional radar data
inversion, we illustrate the capabilities of our approach through numerical simulations.

2.1. PDE-based variational approach

To obtain the evolution in the form of a continuous gradient descent PDE, we consider the
unknown function z to lie along a continuously deforming family of functions z(x, y, τ ) where
the additional variable τ parameterises the family. As such, the energy functional evaluated
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along this evolving family of functions now becomes a simple scalar function of τ , whose
derivative may be expressed in the following integral form (following the same mathematical
development taken, for example, in Kichenassamy et al (1995), Yezzi et al (1997)),

∂E
∂τ

=

∫
Ω

(. . .)︸︷︷︸
∇zE

∂z
∂τ

dx, (11)

where all partial derivatives with respect to τ inside the integral are isolated via combinations
of the chain rule and integration by parts into the single term ∂z

∂τ
shown above. The remainder

of the integrand, which we denote by ∇zE represents the functional derivative of E (which,
when set to zero, yields the classical Euler–Lagrange equation from the calculus of variations)
also known as the first variation. It can be interpreted as an infinite dimensional gradient of E
over the space of all possible functions z (not to be confused with the two-dimensional spatial
gradient of the function z itself ) with respect to the standard functional L2 inner product and/or
norm. As such, we need to develop and manipulate

∂E
∂τ

=

A∑
a=1

∫ tmax

tmin

(
ua(t) − u0

a(t)
) ∂ua(t)

∂τ
dt +

α1

2
∂

∂τ

∫
S
‖∇z‖2 dS. (12)

For simplicity, let’s first consider the derivative ∂ua(t) /∂τ . Let’s define
Q .

=
{

x | (C/2)
(
t −ΔT/2

)
� r � (C/2)

(
t +ΔT/2

)}
, the portion of 3D space cor-

responding to delay times τd ∈
[
t −ΔT/2, t +ΔT/2

]
. It can be demonstrated that, using a

delta function in place of P , for a specific instant t, integral (6) can be rewritten as the integral
on the portion of surface S ∩ Q.

ua(r) =
1
ΔT

∫
S∩Q

V GwR
r4

‖J‖ dx dy. (13)

Considering dependencies in equation (7), we obtain:

∂ua(r)
∂τ

=
1
ΔT

[∫
S∩Q

− 4V Gw

r5
R‖J‖ ∂r

∂z
∂z
∂τ

dx dy

+

∫
S∩Q

V Gw

r4

(
R
‖J‖

∂z
∂x

+
∂R
∂zx

‖J‖
)

∂2z
∂x∂τ

dx dy

+

∫
S∩Q

V Gw

r4

(
R
‖J‖

∂z
∂y

+
∂R
∂zy

‖J‖
)

∂2z
∂y∂τ

dx dy

+

∫
S∩Q

V Gw

r4

∂R
∂z

‖J‖ ∂z
∂τ

dx dy +
∫
S∩Q

V G
r4

∂w

∂r
R‖J‖ ∂r

∂z
∂z
∂τ

dx dy

]
,

(14)

where for sake of simplicity we used zx = ∂z/∂x, and zy = ∂z/∂y. Swapping the order of
derivatives in ∂2z/∂x∂τ and ∂2z/∂y∂τ , integrating by parts the second and third line of (14),
then collecting all the terms in one integral, we obtain a very interesting result:

∂ua(r)
∂τ

=
1
ΔT

∫
S∩Q

V
{

Gw

r4

∂R
∂z

‖J‖+ G
r4

∂w

∂r
R‖J‖ ∂r

∂z
− 4Gw

r5
R‖J‖ ∂r

∂z

− d
dx

[
Gw

r4

(
R∂ ‖J‖

∂zx
+

∂R
∂zx

‖J‖
)]
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− d
dy

[
Gw

r4

(
R∂ ‖J‖

∂zy
+

∂R
∂zy

‖J‖
)]}

∂z
∂τ

dx dy

+

[
Gw

r4
V
(
R∂ ‖J‖

∂zx
+

∂R
∂zx

‖J‖
)

∂z
∂τ

]xmax

xmin

+

[
Gw

r4
V
(
R∂ ‖J‖

∂zy
+

∂R
∂zy

‖J‖
)

∂z
∂τ

]ymax

ymin

. (15)

Third line in equation (15) is a complicated boundary term which should either vanish or be
carefully handled. Actually, a straightforward solution is to select a time windowing function
w that vanishes at the extrema of its interval of definition. Consequently, from now on, we use
a triangular windowing function. Inserting (15) in equation (12), we obtain

∂E
∂τ

=
1
ΔT

A∑
a=1

∫ tmax

tmin

(
ua(t) − u0

a(t)
)
∗

×
∫
S
χQV

{
Gw

r4

∂R
∂z

‖J‖+ G
r4

∂w

∂r
R‖J‖ ∂r

∂z
− 4Gw

r5
R‖J‖ ∂r

∂z

− d
dx

[
Gw

r4

(
R∂ ‖J‖

∂zx
+

∂R
∂zx

‖J‖
)]

− d
dy

[
Gw

r4

(
R∂ ‖J‖

∂zy
+

∂R
∂zy

‖J‖
)]}

∂z
∂τ

dx dy dt

− α1

∫
S
� z

∂z
∂τ

dS,

(16)

where we used the indicator function

χQ(x)
.
=

{
1 if x ∈ Q,

0 otherwise,
(17)

to rewrite the integral on S ∩ Q as an integral over the whole surface S. We can recognise that
if we now swap the space and time integrals, equation (16) has the form (11), with

∇zE =
1
ΔT

A∑
a=1

∫ tmax

tmin

(
ua(t) − u0

a(t)
)
∗

× χQV
{

Gw

r4

∂R
∂z

‖J‖+ G
r4

∂w

∂r
R‖J‖ ∂r

∂z
− 4Gw

r5
R‖J‖ ∂r

∂z

− d
dx

[
Gw

r4

(
R∂ ‖J‖

∂zx
+

∂R
∂zx

‖J‖
)]

− d
dy

[
Gw

r4

(
R∂ ‖J‖

∂zy
+

∂R
∂zy

‖J‖
)]}

dt

∣∣∣∣
x

− α1�z.

(18)
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Figure 3. Reference geometry for experiment 1 and 2. Dots represent 90 antenna dis-
tributed on a semi-spherical surface with 20 km radius (18 equispaced locations on 5
height levels). At each location a radar signal is emitted, and the corresponding echo
from the scene, centred on the axes origin, is recorded.

Equation (18) is the general form of the gradient, valid continuously at each point on the
surface, which we use to obtain the following continuous gradient descent PDE

∂z
∂τ

= −∇zE. (19)

Finally, this PDE may be discretised in the variable τ to obtain the desired shape update steps:

zτ+1 = zτ − α∇zE, (20)

zτ+1 = zτ − α
[
(1 − αacc)∇zE + αacc∇zE

τ−1
]

, (21)

depending if the regular (20) or the accelerated gradient descent (21) is used. Constant α
in equations (20) and (21) being the step of the gradient descent, and αacc the amount of
acceleration. It is worth of note that, the use of the accelerated gradient descent reduced the
computational times of about 90%, so that in practice, throughout this paper we used only the
accelerated descent.

3. Results

In the following, we consider three different test inversions. In examples 1 and 2, we consider
a set of 90 antenna locations distributed at 5 height levels on a spherical surface with radius
20 km (figure 3). The scene is a 1 km by 1 km hill possessing a Gaussian profile and 100 m
high at its centre. The probing signal is assumed to be an LFM chirp, frequency band 4–6 GHz
and 5 μs pulse duration.

In example 1, figures 4 and 5, the radiative function assumed on the surface is the exploding
reflectorR = 1 and G is known. Rather, example 2, figures 6–8, features the Lambertian radia-
tive function R = (er · N)2, with er = r/‖r‖. As such both the incident and the re-irradiated
signals have an amplitude proportional to the cosine between the ray from the antenna to
the surface and the normal vector to the surface. Finally, example 3 (figures 9–13) leverage
R = (er · N). In addition, in this last experiment the effect of noise contaminating the data is
considered. The practical implementation requires to substitute the various radiative assump-
tions R into (18) and explicitly compute the corresponding final forms. Explicit derivations of
∇zE according to different radiative assumptions is somewhat lengthy but conceptually simple.
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Figure 4. Result in the space of models. True and evolving surfaces are shown as
frame and coloured, respectively. Reflectivity is constant (g = 0.71) and known a-priori.
Colours indicate the distance (in m) from the true shape.

Figure 5. (a) Result in the space of data concerning selected antennas in figure 3. (b)
Minimization of the energy functional.

As such, we summarise the final formulas in appendix A. Further, for computational purposes,
we need now to discretise equation (18). To do so, the surface is densely sampled over a regu-
lar grid, in such a way that we can assume each surface sample to be well approximated by a
scatterer of area dA. Therefore, the first advantage of using the PDE approach is that, by con-
sidering the surface as a dense collection of discrete scatterers of very small area (compared
to the size of the averaging triangular window), we avoid the numerical issue of quadrature
integration along individual finite elements. Returning to the examples, figure 4 shows few
snapshots of the obtained surface evolution. As it can be observed, results are extremely good.
In fact, the error in evaluating z is lower than 2%. Further, the only intervention we performed
was lowering the weight for the regulariser α1, once. The values of the parameters used for the
minimisation in this and following examples are summarised in table 1. Figure 5(a) shows the
averaged, normalised windowed echoes at antenna locations 1 and 73. We selected these two
specific locations because they represent the extreme cases in terms of elevation, while other
location on the same levels are almost cylindrically symmetric. Finally, figure 5(b) shows the
corresponding energy minimisation. In example 2, (figure 6) shape reconstruction is performed
based on a Lambertian radiative assumption and an unknown, potentially variable across the
surface, reflectivity. As previously mentioned, given a scene geometry it is simple to devise
a strategy to estimate G. In this example we used an algorithm that considers G as piecewise
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Figure 6. Result in the space of models. True and evolving surfaces are shown as frame
and coloured, respectively. Colours indicate the distance (in m) from the true shape.

Figure 7. Result in the space of models. True reflectivity is constant (G = gg∗ = 0.5),
while the value across to the evolving surface is estimated using the algorithm in
appendix B.1. (a) to (d): estimated G. (e) Error with respect the true G.

Figure 8. (a) Result in the space of data concerning selected antennas in figure 3. (b)
Minimisation of the energy functional.

constant (details in appendix B.1). Figures 7(a)–(d) show the estimates of G across the sur-
face corresponding to images figures 6(a)–(d). Elevation z is reconstructed with an error lower
than 3%. Further, the algorithm reproduced the true, constant G = 0.5 within 1% discrepancy.

15



Inverse Problems 37 (2021) 025004 S Bignardi et al

Figure 9. Experiment 4. (a) True scene. (b) Antenna locations. (c) and (d): number of
time windows and antennas sensing different parts of the scene.

Figure 10. Investigating the effect of noise under the modelling conditions of example 3
(figure 9). The echo from a portion of surface containing a random distribution of point
scatterers is used to compute a reference echo, which in turn is used to generate 50 000
instances of noisy data. Subsequently, the observable function [equation (5)] and SNR
before and after processing are computed. (a) shows the ratio between the grid spacing of
model 9(a), width of the triangular window, and the sinc (black) and sinc2 (red) functions
associated to one point scatterer (all expressed in terms of range). (b) comparison of SNR
before (raw data) and after processing showing how the noise is greatly attenuated.

Figure 7(e) shows the maximum difference in terms of G between the true and the recon-
structed model. Figure 8(a) shows the result in terms of data matching for the two selected
antenna locations. Of course, such signals are different from the previous example, as they are
based on a different radiative model. The Lambertian introduces a stronger constraint on the
shape than the exploding reflector model. As such it is of no surprize that the energy minimi-
sation (figure 8(b)) looks smoother. Indeed, no intervention was required to achieve the latter
result. The slightly lower performance in retrieving z is motivated by the fact that a piecewise
reflectivity violates the requirement of a smooth G and introduces, to some degree, instability
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Figure 11. Result in the space of models. True and evolving surfaces are shown as frame
and coloured, respectively. Colours indicate the distance (in m) from the true shape.

Figure 12. Result in the space of models. Percent difference between successive
estimates of G using the analytical formula (B.12) and the true value G0 = 0.5.

Figure 13. (a) Result in the space of data concerning selected antennas in figure 9(b).
(b) Minimisation of the energy functional.

of the gradient descent flow. In this particular example however, such instability was compen-
sated by the good illumination provided by the high number of antenna locations. In our last
experiment, inspired to a hypothetical acquisition performed by an unmanned aerial vehicle
(e.g. a remotely controlled quadcopter), hovering on the scene, we consider the geometry of
figure 9(a). The scene, in this case, is a small 10 m by 10 m patch, and features three spikes
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Table 1. Summary of the parameters values used in the provided examples and their
changes with iterations.

Iteration α α1 αacc

Example 1 1 1 × 1023 0.1 0.9
8 × 104 1 × 1023 0.0125

Example 2 All 1 × 1022 0.1 0.9
Example 3 All 100 1 × 10−5 0.9

of variable heights (2, 5 and 7 m), purposely designed to generate a challenging to reconstruct
scenario and where the scene visibility is partially occluded to some antennas. The reflectivity
of the true scene is constant (G = 0.5). Antenna locations are, on average 50 m above the scene
(figure 9(b)). Figures 9(c) and (d) show a top view of the surface, where the colour code repre-
sents the total number of time-windows and antennas sensing different portions of the surface.
In other words, they represent the ‘sensitivity’ of data to the scene geometry. In this case the
radiative model is R = (er · N). Beside greatly simplifying the expression of the gradient flow,
this model is in our perspective the most physically sound for the inversion of radar backscat-
tered electric field. The interested reader may refer to Yildirim (2019) for rigorous proof. In
this inversion the reflectivity is unknown initially. We dynamically estimate the best value of a
constant reflectivity while optimising the shape. This approach guarantees a sufficiently good
estimation of the reflectivity while preserving the smooth reflectivity constrain. The analyt-
ical solution for the calculus of G is provided in equation (B.12). An additional motivation
behind this assumption is that for full 3D active surfaces using level set methods applications
(for which this study is preparatory), where changes of topology are naturally handled and
the surface may split into different disjoint shapes, it is simple to manage scenes composed of
multiple constant-reflectivity objects. These aspects however represent future work and will
not be discussed here. In contrast with the previous examples, this experiment addresses the
role of noise affecting the data and its impact on the shape reconstruction. It is worthy of note
that since the noise is of a stochastic nature, we expect it will be greatly attenuated by the time
averaging used in equation (5). To quantify this effect, we performed a small experiment. The
surface in figure 9(a). is defined on a 0.2 by 0.2 m grid, while the width of the triangular time
window used to compute (5) is 0.5 m. As such, similar to the example in figure 2, we consid-
ered a random distribution of point scatterers with a density of 25 × 106 points/m2 along a
hypothetical surface patch of size 0.2 ×1.5 m. We computed the echo generated by this dis-
tribution of scatterers [via superposition of terms as in equation (3)], assuming the antenna to
be located 50 m away from its centre, in a direction aligned with the longitudinal axis of the
patch. The LFM chirp emitted by the antenna is chosen with frequency band 4–6 GHz and pulse
duration 0.1 μs. With this computed echo as a reference, we used randomly generated, zero-
mean Gaussian noise to create 50 000 instances of noisy data, each with signal to noise ratio
(SNR) of about 20 dB. Such noise was designed to corrupt both amplitude and phase randomly.
Figure 10(a) shows the ratio between the width of the triangular window and the grid spacing
of the surface, as well as how the sinc (in black) and sinc2 (in red) functions [equation (4)], for
one scatterer, fit within this range span. For each simulated noisy signal we computed the cor-
responding processed signal (5, the quantity we invert for) and the signal to noise ratios before
and after processing. Figure 10(b) compares the distribution of these SNR. The vertical axis,
denoted ‘probabilit’ represents the height of the histogram bars divided by the total population
(i.e. 50 000). After processing, the initial SNR (20 dB) greatly improves. However, to further
emphasize the robustness of our approach to noise, in this example we will assume that noise
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with 20 dB SNR has not been mitigated by the time windowing. Figure 11 shows the evolution
flow starting from an initial parabolic shape. In this experiment we imposed Dirichlet (i.e. z
= 0) boundary conditions. The correct shape is recovered almost perfectly, except few sparse
locations which present a maximum error of 2%. We easily discriminated the three spikes in
the scene and despite the visibility occlusions, correctly reconstructed their different heights
and curvy tips. Figure 12 shows the evolution of the estimated reflectivity of the scene. The first
estimate, even if the starting shape was completely different, was only 4% off. Subsequently,
it evolved concurrently with the shape and finally reached a value 0.3% off with respect to
the true value. Finally, figure 13(a) shows the result, in the data domain. Despite the noise,
we obtained an excellent fit. Energy, figure 13(b), is nicely minimised without the need of any
intervention on the inversion parameters. The high values of the regulariser in mid iterations
(green dashed curve) show that the surface at intermediate iterations was highly irregular with
complex visibility occlusions. Nevertheless, since totally occluded regions are still evolved by
the regulariser, the inversion process is capable of recovering and if necessary, bring back to
the correct visible location, those portions of the surface that could not evolve any more and
would otherwise generate false positives. Small discontinuities in the energy, as highlighted
by the a and b labels in figure 13(b) plot are due to adjustments in the estimated reflectivity.
The effect of noise on the energy minimisation can be observed in figure 13(b) by comparing
the energy minimisation associated with noisy data (blue line) to the noise free minimisation
(black line). To highlight this difference, in this plot we used a logarithmic vertical scale, while
difference in the reconstructed shape were almost undetectable.

4. Discussion

In section 3 we showed how to perform shape reconstruction by inverting time-domain radar
echoes acquired at sparse locations. We achieved this by formulating the problem within a
similar variational framework used for multiview stereo reconstruction, well established in
computer vision to tackle shape inversion from image data acquired by sparse cameras. To do
so, we built a least squared optimisation in which the mismatch is computed with respect an
observable quantity [equation (5)] derived from radar data. Since radar signals are oscillatory
in nature, two key aspects of this equation are that it considers the power of the signal and
it leverages a time averaging window. These two features together help suppress most of the
oscillating terms, leading to a sufficiently well behaved energy. The advantage of the variational
formalism is that the energy gradient is computed analytically, keeping the representation of
the surface continuous, with discretisation introduced only at the very last stage for the sake of
practical computation.

It is worth mentioning that in our earliest attempts to tackle this problem, we used a finite
element approach in which the surface was discretised using triangular elements and each inte-
gration operation over it [e.g. equation (6)] was performed numerically on each element. In
addition we considered squared and Gaussian windows as time averaging strategy. Finally,
reflectivity was known. This early approach was not successful when implemented using
squared windows while it worked using Gaussian windows. Even when successful, the con-
verged surface still presented errors in z up to 10%. In addition, to be practical the finite element
approach required surface re-meshing and consequently, re-processing of raw data with dif-
ferent time window lengths. In other words, inversion required several manual interventions
and involved parameter tuning. The PDE-based evolution provided striking improvement. Not
only the necessity for remeshing was completely removed, but errors in z are lower than 3%,
even when reflectivity is unknown. We also demonstrated that reflectivity can be estimated
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with errors lower than 0.5%. Notably, the result is achieved with little or no user interven-
tion. In addition, the explicit presence of boundary terms in equation (15) highlighted by the
variational analysis elegantly explains why the use of a square windows failed and why
the result obtained with the Gaussian window, despite being reasonable, was only partially
successful.

As highlighted in section 2 averaging the data with a moving time-window has several direct
consequences. First, we do not exploit the phase curtain but we rather leverage the amplitude
information, in terms of energy density located at specific ranges. We note, in some sense, that
the information lost by disregarding the phase curtain is actually re-introduced in the inversion
machinery by the fact that we are performing a local optimisation with respect to an explicitly
modelled surface. In turn, this surface determines how the back reflected energy distributes
over different ranges and it is then observed by the antennas, making the coherent summation
unnecessary. Second, while the location of every portion of surface (and therefore the gen-
eral shape), is mostly ruled by the presence of back-reflected energy at a specific delay time,
the actual amount of such energy is ruled by the reflectivity and the radiative behaviour. In
other words, we can still reconstruct the shape fairly well, even with a poor estimation of the
reflectivity.

The price of using a sparse configuration of antennas (and abandoning phase summation)
seems to be a loss of resolution, to some extent. However, such a loss is only an apparent issue.
For example, Thomas et al (1989) achieved topography reconstruction leveraging stereo recon-
struction technique on SAR images using a ‘smoothness’ regulariser to cope with speckle. They
observed that strong regularisation was necessary for the reconstruction to succeed. In turn, the
regularisation resulted in lower resolution. Their findings with stereo image reconstruction is by
all means equivalent with what we observed dealing with independent echo signals and using
an averaging window. The consideration to make is that to determine the shape of an object
of interest, the high resolution provided by SAR images is actually unnecessary as objects are
typically of a larger scale compared to images pixels.

In the present context, the resolution to which the scene geometry is reconstructed depends
on the spacing of the computational grid and on the width and overlap (in terms of range) of
the triangular windows used. Since we are dealing with a least-squared nonlinear optimisation,
it is very difficult to quantify the resolution analytically. Nevertheless, if we consider a small
patch of surface surrounding a point of the discretised surface (x, y, z(x, y)), the grid spacing
should be chosen large enough to consider its collective contribution, as opposed to modelling
all of the scatterers distributed on it. In figure 2 we demonstrated that the cumulative signal
from an almost continuous distribution of scatterers on a patch is well behaved and the tails
leaking outside the patch (in terms of range) are negligible after 2–3 wavelengths distance.
In addition, considering a hypothetical point scatterer on this patch, the time window used
to average the raw data should be chosen large enough to include the main lobe and few of
the secondary lobes of the associated sinc2 function (i.e. most of the energy re-irradiated by
the scatterer). Ideally, this is achieved choosing a time-window as large as the grid spacing
augmented by 4–6 wavelengths (to include oscillating tails). After these considerations, not
accounting for squinted view angles from the antennas with respect to the orientation of the
computational grid and disregarding the fact that each time window should cover a ‘sufficiently
wide stripe of surface’, it can be expected that achievable resolution may be as low as 10
wavelengths. Nevertheless, the loss in resolution introduced by the time averaging window
can be partially recovered using partially overlapping windows. In fact, there is no limitation
on the amount of such overlap. In example 3 for example, we considered a grid spacing and
a window width equivalent to 4 and 20 wavelengths, respectively. Windows’ overlap of 90%
ensured that information within consecutive time-windows differed only by the contribution
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of a surface band 2 wavelengths wide (c.a. 10 cm). With the presence of a reference evolving
surface our approach fully accounts for visibility, although we did not account for multiple
scattering.

Within raw radar signals, the effect of multiple scattering is the presence of back scattered
energy at later delay times. As far as the inversion approach is concerned, the use of several
overlapping windows allows discriminating such energy from direct backscattering. Therefore,
the only limitation in this sense, comes from the modelling routine underlying the inversion,
which was not designed to account for this phenomenon. While the main motivation for this
choice was to lower the computational cost, this choice was also motivated by the fact that
smooth surfaces (such as those dealt here) are less prone to generate multiple reflections and
when these occur, they are expected to be strongly attenuated. Summarising, accounting for
multiple reflections would only require the use of a more involved forward model.

Finally, real world radar echoes contain usually some level of noise, which is typically a
stochastic, zero mean phenomenon. Such noise affects the samples of the complex raw data,
both in terms of amplitude and phase. Since traditional radar processing leverages phase sum-
mation, great effort is placed to achieve the best SNR. In contrast, we leverage the backscattered
energy density distribution as function of time/range. Noise may affect the amount of energy
at a specific range but not its collocation in terms of range, which as we have shown rules our
shape evolution. Additionally, we demonstrated that the noise in the raw data is strongly atten-
uated once the observables to be inverted are computed [equation (5)]. Given a fixed range,
the surviving noise will manifest itself in a slight amplitude perturbation, and as explained
before, in our approach this kind of perturbations do not impact the shape but rather affects
the reflectivity. On the other hand, we have shown that we can estimate reflectivity on the fly
and achieve the correct reconstruction even when such estimate is poor. Most importantly, we
must emphasise that this inversion can tolerate uncertainties on reflectivity far greater than any
noise related disturbance.

5. Conclusion

In this paper we tackled the problem of shape and reflectivity reconstruction from remotely
sensed radar signals. In contrast with classic approaches, where the shape is retrieved using well
established computer vision tools on images formed by traditional radar imaging, we formu-
lated the problem as an iterative local inversion of the time-domain radar back-scattered signals.
Key considerations concerning our approach and implementation aspects have been illustrated
by means of three examples, with increasing complexity. Such implementation aspects include:
(1) the strategy adopted in order to form a well-behaved energy functional from such high fre-
quency signals in order to avoid the cycle-skipping phenomenon. We solved this difficulty by
means of a moving averaging window, and we motivated why such windows must be of finite
length and fade to zero at their end points. (2) We investigated three different radiative models
of the surface, (3) we illustrated strategies to directly evaluate the reflectivity of the surface. (4)
Since for simplicity we limited our investigation to surfaces defined as a graph of a function, we
used two different boundary conditions. (5) Finally, we discussed the mechanisms ruling the
model evolution, the achievable resolution and robustness with respect to noise. The result of
this investigation is therefore that in order to build a well behaved energy functional an averag-
ing strategy of the raw signals should be adopted. This choice has several direct consequences.
First, we do not exploit the phase curtain but we rather leverage the amplitude information, in
terms of energy density located at specific ranges. We note, in some sense, that the informa-
tion lost by disregarding the phase curtain is actually re-introduced in the inversion machinery
by the fact that we are performing a local optimisation with respect to an explicitly modelled
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surface. In turn, this surface determines how the back reflected energy distributes over dif-
ferent ranges and how it is observed by different antennas, making the coherent summation
unnecessary. As such, this can be considered a noncoherent approach.

This approach extends the useful processing range for data collected by sparse antennas and
high frequencies. We showed that shape can be accurately reconstructed even with a poor esti-
mation of the reflectivity and that reflectivity can be accurately evaluated knowing the shape.
The problem is particularly simple if a constant reflectivity is assumed. Therefore, despite the
restriction in this study to surfaces parametrized as a graph, we demonstrated that variational
approaches leading to PDE driven shape evolution represent a natural and elegant framework
to reconstruct scene geometry. Given these results, extending the present mathematical frame-
work to more general 3D active surfaces and expressing the surface in more flexible implicit
form using level set methods would be the most promising and natural next step to advance
this variational framework. Level set methods will naturally handle changes of surface topol-
ogy and will allow for the presence of different constant-reflectivity objects coexisting in the
same scene even if their number is a-priori unknown. This will indeed be a key focus of our
upcoming future work.
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Appendix A. Explicit forms of the gradient flow

In section 2.1 we provided the most general form of ∂u(r) /∂τ equation (15), and we introduced
it into the energy derivative (12). Subsequently, we defined the indicator functionχ (17) to swap
the time and surface integrals, and rewrite the equation in form (11) in which we recognized the
gradient sought∇zE (18). In the following we provide the explicit forms of ∂u(r) /∂τ and∇zE
for different choices of the radiative function. To obtain specific formulas we substitute R = 1,
R = (er · N), or R = (er · N)2 in equation (15) and we leverage the following mathematical
relations:

(er · N) = (∇r · N) =
∂r
∂z −

∂z
∂x

∂r
∂x − ∂z

∂y
∂r
∂y

‖J‖ , (A.1)

2H =

(
1 +
(
∂z
∂x

)2
)

∂2z
∂y2 − 2 ∂z

∂x
∂z
∂y

∂2z
∂x∂y +

(
1 +
(

∂z
∂y

)2
)

∂2z
∂x2

‖J‖3 , (A.2)

∇G · N = −
∂G
∂x

∂z
∂x + ∂G

∂y
∂z
∂y

‖J‖ , (A.3)
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∇G · ∇r =
∂G
∂x

∂r
∂x

+
∂G
∂y

∂r
∂y

, (A.4)

some of which are specific to our choice of describing the surface as a graph of a function, with
normal vector oriented upward. We recall that boundary terms in (15) will vanish by selecting
an averaging window w fading to zero at its edges. Finally, in order to simplify the notation,
let’s consider just one antenna and drop index a.

A.1. Exploding reflector R = 1

∂u(r)
∂τ

=
1
ΔT

∫
S∩Q

V
[
w

r4
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(
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r4
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)
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]
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dx dy. (A.5)
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A.2. Cosine R = (er · N)
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A.3. Lambertian,R= (er · N)2,H = (er · N)
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Appendix B. Algorithms for the direct computation of reflectivity

B.1. Piecewise reflectivity

Assuming we are considering finite time intervals tm = tmin + mΔt. For each antenna—time
window pair (a, tm) we demand

(
ua (tm) − u0

a (tm)
)
= 0. Assuming that it exist a constant value

of Gam on the portion of surface individuated by the (a, tm) combination, we rewrite the latter
equation using (13)

ua(tm) = Gam
1
Δt

(∫
S∩Q

VwR
r4

‖J‖ dx dy

)
= GamŴam (B.1)

we obtain

Gam =
u0

am

Ŵam
(B.2)

therefore a value of ‘apparent’ G is obtained. Considering now a point p on the surface, located
at position x with an associated infinitesimal area da (that in the practical computation it will
be associated to a node of the computational grid), we know from the forward model equations
that the point contributes to a specific (a, tm) pair, in which it is included, as

Cam = G (x)VwR
r4

da

= G (x) Ham.

(B.3)

Actually, point p will most probably contribute to several time windows for the same antenna
a, and to several antennas. As such, we expect that it will contribute in the computation of
several ua(tm) and in turn, to several Gam. Therefore, in order to estimate G (x) from this set of
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apparent values we use a weighted average.

G (x) =

∑A
a

∑M
m GamHam∑A

a

∑M
m Ham

(B.4)

B.2. Constant reflectivity

Starting from equation (9), we consider the partial derivative of the energy with respect to G:

∂E
∂G

=

na∑
a=1

∫ tmax

tmin

(
ua(t) − u0

a(t)
) ∂ua(t)

∂G
dt (B.5)

imposing this equation to be zero,

A∑
a=1
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(
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) ∂ua(t)

∂G
dt = 0 (B.6)
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then computing ∂ua(t) /∂G, and assuming G is constant across the surface

ua(t) = G
1
Δt

(∫
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VwR
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= GŴa(t) (B.8)
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)
= Ŵa(t) (B.9)

note that Ŵa(t) is independent of G, therefore
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a(t) Ŵa(t) dt (B.11)

finally
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